Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease
dc.contributor.author | Lakshman Kumar, Preeti | |
dc.contributor.author | Wilson, Ava C. | |
dc.contributor.author | Rocco, Alison | |
dc.contributor.author | Cho, Michael H. | |
dc.contributor.author | Wan, Emily | |
dc.contributor.author | Hobbs, Brian D. | |
dc.contributor.author | Washko, George R. | |
dc.contributor.author | Ortega, Victor E. | |
dc.contributor.author | Christenson, Stephanie A. | |
dc.contributor.author | Li, Xingnan | |
dc.contributor.author | Wells, J. Michael | |
dc.contributor.author | Bhatt, Surya P. | |
dc.contributor.author | DeMeo, Dawn L. | |
dc.contributor.author | Lutz, Sharon M. | |
dc.contributor.author | Rossiter, Harry | |
dc.contributor.author | Casaburi, Richard | |
dc.contributor.author | Rennard, Stephen I. | |
dc.contributor.author | Lomas, David A. | |
dc.contributor.author | Labaki, Wassim W. | |
dc.contributor.author | Tal-Singer, Ruth | |
dc.contributor.author | Bowler, Russel P. | |
dc.contributor.author | Hersh, Craig P. | |
dc.contributor.author | Tiwari, Hemant K. | |
dc.contributor.author | Dransfield, Mark | |
dc.contributor.author | Thalacker-Mercer, Anna | |
dc.contributor.author | Meyers, Deborah A. | |
dc.contributor.author | Silverman, Edwin K. | |
dc.contributor.author | Mcdonald, Merry-Lynn N. | |
dc.date.accessioned | 2022-01-06T15:51:11Z | |
dc.date.available | 2023-01-06 10:51:08 | en |
dc.date.available | 2022-01-06T15:51:11Z | |
dc.date.issued | 2021-12 | |
dc.identifier.citation | Lakshman Kumar, Preeti; Wilson, Ava C.; Rocco, Alison; Cho, Michael H.; Wan, Emily; Hobbs, Brian D.; Washko, George R.; Ortega, Victor E.; Christenson, Stephanie A.; Li, Xingnan; Wells, J. Michael; Bhatt, Surya P.; DeMeo, Dawn L.; Lutz, Sharon M.; Rossiter, Harry; Casaburi, Richard; Rennard, Stephen I.; Lomas, David A.; Labaki, Wassim W.; Tal-Singer, Ruth ; Bowler, Russel P.; Hersh, Craig P.; Tiwari, Hemant K.; Dransfield, Mark; Thalacker-Mercer, Anna ; Meyers, Deborah A.; Silverman, Edwin K.; Mcdonald, Merry-Lynn N. (2021). "Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease." Journal of Cachexia, Sarcopenia and Muscle 12(6): 1803-1817. | |
dc.identifier.issn | 2190-5991 | |
dc.identifier.issn | 2190-6009 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/171220 | |
dc.description.abstract | BackgroundChronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. COPD patients with cachexia or weight loss have increased risk of death independent of body mass index (BMI) and lung function. We tested the hypothesis genetic variation is associated with weight loss in COPD using a genome- wide association study approach.MethodsParticipants with COPD (N = 4308) from three studies (COPDGene, ECLIPSE, and SPIROMICS) were analysed. Discovery analyses were performed in COPDGene with replication in SPIROMICS and ECLIPSE. In COPDGene, weight loss was defined as self- reported unintentional weight loss > 5% in the past year or low BMI (BMI < 20 kg/m2). In ECLIPSE and SPIROMICS, weight loss was calculated using available longitudinal visits. Stratified analyses were performed among African American (AA) and Non- Hispanic White (NHW) participants with COPD. Single variant and gene- based analyses were performed adjusting for confounders. Fine mapping was performed using a Bayesian approach integrating genetic association results with linkage disequilibrium and functional annotation. Significant gene networks were identified by integrating genetic regions associated with weight loss with skeletal muscle protein- protein interaction (PPI) data.ResultsAt the single variant level, only the rs35368512 variant, intergenic to GRXCR1 and LINC02383, was associated with weight loss (odds ratio = 3.6, 95% confidence interval = 2.3- 5.6, P = 3.2 à  10- 8) among AA COPD participants in COPDGene. At the gene level in COPDGene, EFNA2 and BAIAP2 were significantly associated with weight loss in AA and NHW COPD participants, respectively. The EFNA2 association replicated among AA from SPIROMICS (P = 0.0014), whereas the BAIAP2 association replicated in NHW from ECLIPSE (P = 0.025). The EFNA2 gene encodes the membrane- bound protein ephrin- A2 involved in the regulation of developmental processes and adult tissue homeostasis such as skeletal muscle. The BAIAP2 gene encodes the insulin- responsive protein of mass 53 kD (IRSp53), a negative regulator of myogenic differentiation. Integration of the gene- based findings participants with PPI data revealed networks of genes involved in pathways such as Rho and synapse signalling.ConclusionsThe EFNA2 and BAIAP2 genes were significantly associated with weight loss in COPD participants. Collectively, the integrative network analyses indicated genetic variation associated with weight loss in COPD may influence skeletal muscle regeneration and tissue remodelling. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | COPD | |
dc.subject.other | Genetics | |
dc.subject.other | Biomarkers | |
dc.subject.other | Tissue remodelling | |
dc.subject.other | Skeletal muscle regeneration | |
dc.subject.other | GWAS | |
dc.subject.other | Cachexia | |
dc.subject.other | Weight loss | |
dc.title | Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Internal Medicine | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171220/1/jcsm12782_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171220/2/jcsm12782.pdf | |
dc.identifier.doi | 10.1002/jcsm.12782 | |
dc.identifier.source | Journal of Cachexia, Sarcopenia and Muscle | |
dc.identifier.citedreference | 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015; 526: 68 - 74. | |
dc.identifier.citedreference | Jackson VE, Ntalla I, Sayers I, Morris R, Whincup P, Casas JP, et al. Exome- wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12. Thorax 2016; 71: 501 - 509. | |
dc.identifier.citedreference | Vestbo J, Hurd SS, Agustà AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187: 347 - 365. | |
dc.identifier.citedreference | Xu J, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths: final data for 2016. Natl Vital Stat Rep 2018; 67: 1 - 76. | |
dc.identifier.citedreference | Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr 2008; 27: 793 - 799. | |
dc.identifier.citedreference | McDonald MN, Wouters EFM, Rutten E, Casaburi R, Rennard SI, Lomas DA, et al. It’s more than low BMI: prevalence of cachexia and associated mortality in COPD. Respir Res 2019; 20: 100. | |
dc.identifier.citedreference | Arthur ST, Noone JM, Van Doren BA, Roy D, Blanchette CM. One- year prevalence, comorbidities and cost of cachexia- related inpatient admissions in the USA. Drugs Context 2014; 3: 212265. | |
dc.identifier.citedreference | von Haehling S, Anker SD. Prevalence, incidence and clinical impact of cachexia: facts and numbers- update 2014. J Cachexia Sarcopenia Muscle. 2014; 5: 261 - 263. https://doi.org/10.1007/s13539- 014- 0164- 8 | |
dc.identifier.citedreference | Remels AH, Gosker HR, Langen RC, Schols AM. The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol (1985) 2013; 114: 1253 - 1262. | |
dc.identifier.citedreference | Gosker HR, Zeegers MP, Wouters EFM, Schols AMWJ. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta- analysis. Thorax 2007; 62: 944 - 949. | |
dc.identifier.citedreference | Mcdonald M- LN, Won S, Mattheisen M, Castaldi PJ, Cho MH, Rutten E, et al. Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with dedicator of cytokinesis 1. J Cach Sarcop Muscle 2017; 1 - 9. | |
dc.identifier.citedreference | European Palliative Care Research Collaborative, Tan BHL, Ross JA, Kaasa S, Skorpen F, Fearon KCH. Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review. J Genet 2011; 90: 165 - 177. | |
dc.identifier.citedreference | Johns N, Tan BH, MacMillan M, Solheim TS, Ross JA, Baracos VE, et al. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies. J Genet 2014; 93: 893 - 916. | |
dc.identifier.citedreference | Johns N, Stretch C, Tan BH, Solheim TS, Sørhaug S, Stephens NA, et al. New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle 2017; 8: 122 - 130. | |
dc.identifier.citedreference | von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2019. J Cachexia Sarcopenia Muscle 2019; 10: 1143 - 1145. | |
dc.identifier.citedreference | Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD 2010; 7: 32 - 43. | |
dc.identifier.citedreference | Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End- points (ECLIPSE). Eur Respir J 2008; 31: 869 - 873. | |
dc.identifier.citedreference | Hansel NN, Paulin LM, Gassett AJ, Peng RD, Alexis N, Fan VS, et al. Design of the Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study. BMJ Open Respir Res 2017; 4: e000186. | |
dc.identifier.citedreference | Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD executive summary. Respirology 2017; 22: 575 - 601. | |
dc.identifier.citedreference | Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 2010; 42: 200 - 202. | |
dc.identifier.citedreference | Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al. Efficiently controlling for case- control imbalance and sample relatedness in large- scale genetic association studies. Nat Genet 2018; 50: 1335 - 1341. | |
dc.identifier.citedreference | Cho MH, Mcdonald ML, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, et al. Risk loci for chronic obstructive pulmonary disease: a genome- wide association study and meta- analysis. Lancet Respir Med 2014; 2: 214 - 225. | |
dc.identifier.citedreference | McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 2016; 48: 1279 - 1283. | |
dc.identifier.citedreference | Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high- throughput sequencing data. Nucleic Acids Res 2010; 38: e164. | |
dc.identifier.citedreference | Purcell S, Neale B, Todd- Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole- genome association and population- based linkage analyses. Am J Hum Genet 2007; 81: 559 - 575. | |
dc.identifier.citedreference | Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40: D930 - D934. | |
dc.identifier.citedreference | Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 2008; 32: 381 - 385. | |
dc.identifier.citedreference | Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome- wide association scan results. Bioinformatics 2010; 26: 2336 - 2337. | |
dc.identifier.citedreference | Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta- analysis of genomewide association scans. Bioinformatics 2010; 26: 2190 - 2191. | |
dc.identifier.citedreference | de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene- set analysis of GWAS data. PLoS Comput Biol 2015; 11: e1004219. | |
dc.identifier.citedreference | Kichaev G, Yang WY, Lindstrom S, Hormozdiari F, Eskin E, Price AL, et al. Integrating functional data to prioritize causal variants in statistical fine- mapping studies. PLoS Genet 2014; 10: e1004722. | |
dc.identifier.citedreference | Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome- wide association studies in protein- protein interaction networks. Bioinformatics 2011; 27: 95 - 102. | |
dc.identifier.citedreference | Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S. Integrated network analysis platform for protein- protein interactions. Nat Methods 2009; 6: 75 - 77. | |
dc.identifier.citedreference | Gonzalez- Freire M, Semba RD, Ubaida- Mohien C, Fabbri E, Scalzo P, Højlund K, et al. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. J Cachexia Sarcopenia Muscle 2017; 8: 5 - 18. | |
dc.identifier.citedreference | Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498 - 2504. | |
dc.identifier.citedreference | Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge- based approach for interpreting genome- wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545 - 15550. | |
dc.identifier.citedreference | Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 2017; 8: 1826. | |
dc.identifier.citedreference | Consortium GT. The Genotype- Tissue Expression (GTEx) project. Nat Genet 2013; 45: 580 - 585. | |
dc.identifier.citedreference | Miyahara A, Okamura- Oho Y, Miyashita T, Hoshika A, Yamada M. Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53- kDa protein. J Hum Genet 2003; 48: 410 - 414. | |
dc.identifier.citedreference | Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 2013; 5. | |
dc.identifier.citedreference | Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, et al. Ephrin- A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 2005; 19: 462 - 471. | |
dc.identifier.citedreference | Halle JL, Pena GS, Paez HG, Castro AJ, Rossiter HB, Visavadiya NP, et al. Tissue- specific dysregulation of mitochondrial respiratory capacity and coupling control in colon- 26 tumor- induced cachexia. Am J Physiol Regul Integr Comp Physiol 2019; 317: R68 - R82. | |
dc.identifier.citedreference | Khamoui AV, Tokmina- Roszyk D, Rossiter HB, Fields GB, Visavadiya NP. Hepatic proteome analysis reveals altered mitochondrial metabolism and suppressed acyl- CoA synthetase- 1 in colon- 26 tumor- induced cachexia. Physiol Genomics 2020; 52: 203 - 216. | |
dc.identifier.citedreference | Jensen KJ, Alpini G, Glaser S. Hepatic nervous system and neurobiology of the liver. Compr Physiol 2013; 3: 655 - 665. | |
dc.identifier.citedreference | Scita G, Confalonieri S, Lappalainen P, Suetsugu S. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 2008; 18: 52 - 60. | |
dc.identifier.citedreference | Misra A, George B, Rajmohan R, Jain N, Wong MH, Kambadur R, et al. Insulin receptor substrate protein 53kDa (IRSp53) is a negative regulator of myogenic differentiation. Int J Biochem Cell Biol 2012; 44: 928 - 941. | |
dc.identifier.citedreference | Kneppers AEM, Haast RA, Langen RC, Verdijk LB, Leermakers PA, Gosker HR, et al. Distinct skeletal muscle molecular responses to pulmonary rehabilitation in chronic obstructive pulmonary disease: a cluster analysis. J Cach Sarcop Muscle 2019; 10: 311 - 322. | |
dc.identifier.citedreference | Wallace MA, Hock MB, Hazen BC, Kralli A, Snow RJ, Russell AP. Striated muscle activator of Rho signalling (STARS) is a PGC- 1alpha/oestrogen- related receptor- alpha target gene and is upregulated in human skeletal muscle after endurance exercise. J Physiol 2011; 589: 2027 - 2039. | |
dc.identifier.citedreference | Sanders KJC, Kneppers AEM, van de Bool C, Langen RCJ, Schols AMWJ. Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. J Cachexia Sarcopenia Muscle 2016; 7: 5 - 22. | |
dc.identifier.citedreference | McDonald ML, Mattheisen M, Cho MH, Liu YY, Harshfield B, Hersh CP, et al. Beyond GWAS in COPD: probing the landscape between gene- set associations, genome- wide associations and protein- protein interaction networks. Hum Hered 2015; 78: 131 - 139. | |
dc.identifier.citedreference | Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, et al. Meta- analysis identifies 13 new loci associated with waist- hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 2010; 42: 949 - 960. | |
dc.identifier.citedreference | Bassel- Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 2006; 75: 19 - 37. | |
dc.identifier.citedreference | Hobbs BD, de Jong K, Lamontagne M, Bossé Y, Shrine N, Artigas MS, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet 2017; 49: 426 - 432. | |
dc.identifier.citedreference | Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A genome- wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 2012; 21: 947 - 957. | |
dc.identifier.citedreference | Prokopenko D, Sakornsakolpat P, Fier HL, Qiao D, Parker MM, Mcdonald ML, et al. Whole- genome sequencing in severe chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2018; 59: 614 - 622. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.