Show simple item record

Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales

dc.contributor.authorVisheratina, Anastasia
dc.contributor.authorKumar, Prashant
dc.contributor.authorKotov, Nicholas
dc.date.accessioned2022-01-06T15:51:23Z
dc.date.available2023-02-06 10:51:18en
dc.date.available2022-01-06T15:51:23Z
dc.date.issued2022-01
dc.identifier.citationVisheratina, Anastasia; Kumar, Prashant; Kotov, Nicholas (2022). "Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales." AIChE Journal 68(1): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/171224
dc.publisherJohn Wiley & Sons, Inc.
dc.titleEngineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171224/1/aic17438.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171224/2/aic17438_am.pdf
dc.identifier.doi10.1002/aic.17438
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceQuerejeta‐Fernàndez A, Hernàndez‐Garrido JC, Yang H, et al. Unknown aspects of self‐assembly of PbS microscale superstructures. ACS Nano. 2012; 6 ( 5 ): 3800 ‐ 3812.
dc.identifier.citedreferenceLenz M, Witten TA. Geometrical frustration yields fibre formation in self‐assembly. Nat Phys. 2017; 13 ( 11 ): 1100 ‐ 1104. https://doi.org/10.1038/nphys4184
dc.identifier.citedreferenceGrason G, Perspective M. Geometrically frustrated assemblies. J Chem Phys. 2016; 145 ( 11 ): 110901. https://doi.org/10.1063/1.4962629
dc.identifier.citedreferencede Queirós Silveira G, Ramesar N, Nguyen T, Bahng J, Glotzer S, Kotov N. Supraparticle nanoassemblies with enzymes. Chem Mater. 2019; 31 ( 18 ): 7493 ‐ 7500. https://doi.org/10.1021/acs.chemmater.9b02216
dc.identifier.citedreferenceYousefi AM, Zhou Y, Querejeta‐Fernández A, Sun K, Kotov NA. Streptavidin inhibits self‐assembly of CdTe nanoparticles. J Phys Chem Lett. 2012; 3 ( 22 ): 3249 ‐ 3256. https://doi.org/10.1021/jz301455b
dc.identifier.citedreferenceQu Z, Feng W‐J, Wang Y, Romanenko F, Kotov NA. Diverse nanoassemblies of graphene quantum dots and their mineralogical counterparts. Angew Chem. 2020; 59 ( 22 ): 8542 ‐ 8551. https://doi.org/10.1016/0009-2509(62)87032-8
dc.identifier.citedreferenceJiang W, Pacella MS, Athanasiadou D, et al. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat Commun. 2017; 8: 15066. https://doi.org/10.1038/ncomms15066
dc.identifier.citedreferenceZhao B, Yu H, Pan K, Tan Z, Deng J. Multifarious chiral nanoarchitectures serving as handed‐selective fluorescence filters for generating full‐color circularly polarized luminescence. ACS Nano. 2020; 14 ( 3 ): 3208 ‐ 3218. https://doi.org/10.1021/acsnano.9b08618
dc.identifier.citedreferenceDuan Y, Liu X, Han L, et al. Optically active chiral CuO “nanoflowers ”. J Am Chem Soc. 2014; 136 ( 20 ): 7193 ‐ 7196. https://doi.org/10.1021/ja500197e
dc.identifier.citedreferenceQian Y, Duan Y, Che S. Chiral nanostructured CuO films with multiple optical activities. Adv Opt Mater. 2017; 5: 1601013. https://doi.org/10.1002/adom.201601013
dc.identifier.citedreferenceYu H, Huang H, Liang J, Deng J. Twisted bio‐nanorods serve as a template for constructing chiroptically active nanoflowers. Nanoscale. 2018; 10 ( 25 ): 12163 ‐ 12168. https://doi.org/10.1039/C8NR03124J
dc.identifier.citedreferenceZhao Y, Xu L, Ma W, et al. Shell‐engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 2014; 14 ( 7 ): 3908 ‐ 3913. https://doi.org/10.1021/nl501166m
dc.identifier.citedreferenceLong G, Sabatini R, Saidaminov MI, et al. Chiral‐perovskite optoelectronics. Nat Rev Mater. 2020; 5: 423 ‐ 443. https://doi.org/10.1038/s41578-020-0181-5
dc.identifier.citedreferenceKumar J, Eraña H, López‐Martínez E, et al. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc Natl Acad Sci. 2018; 115 ( 13 ): 3225 ‐ 3230. https://doi.org/10.1073/pnas.1721690115
dc.identifier.citedreferenceRouhi A. Chiral business: fine chemicals companies are jockeying for position to deliver the increasingly complicated chiral small molecules of the future. Chem Eng News. 2003; 81 ( 18 ): 56 ‐ 61.
dc.identifier.citedreferenceChallener CA. Expanding the chiral toolbox. Pharm Technol. 2016; 40 ( 7 ): 28 ‐ 29.
dc.identifier.citedreferenceWu X, Xu L, Ma W, et al. Gold core‐DNA‐silver shell nanoparticles with intense plasmonic chiroptical activities. Adv Funct Mater. 2015; 25 ( 6 ): 850 ‐ 854. https://doi.org/10.1002/adfm.201403161
dc.identifier.citedreferenceYang G, Kazes M, Oron D. Chiral 2D colloidal semiconductor quantum wells. Adv Funct Mater. 2018; 1802012. https://doi.org/10.1002/adfm.201802012
dc.identifier.citedreferencevan’t Hoff JH. Die Langerung Der Atome Im Raume. Arch Neer. 1874; 9: 445.
dc.identifier.citedreferenceArteaga O, Kahr B. Mueller matrix polarimetry of bianisotropic materials. JOSA B. 2019; 36 ( 8 ): F72 ‐ F83.
dc.identifier.citedreferenceGallagher S, Moloney MP, Wojdyla M, Quinn SJ, Kelly JM, Gun’ko YK. Synthesis and spectroscopic studies of chiral CdSe quantum dots. J Mater Chem. 2010; 20 ( 38 ): 8350. https://doi.org/10.1039/c0jm01185a
dc.identifier.citedreferenceXia Y, Zhou Y, Tang Z. Chiral inorganic nanoparticles: origin, optical properties and bioapplications. Nanoscale. 2011; 3 ( 4 ): 1374 ‐ 1382. https://doi.org/10.1039/c0nr00903b
dc.identifier.citedreferenceGeison GL. The Private Science of Louis Pasteur. Princeton University Press; 2014.
dc.identifier.citedreferencePasteur L. Sur Les Relations Qui Peuvent Exister Entre La Forme Crystalline, La Composition Chimique et Le Sens de La Polarization Rotatoire. Ann Chim Phys. 1848; 24: 442 ‐ 459.
dc.identifier.citedreferenceLe Bel JA. Sur Les Relations Qui Existent Entre Les Formules Atomiques Des Corps Organiques et Le Pouvoir Rotatoire de Leurs Solutions. Bul Soc Chim Paris. 1874; 22: 337 ‐ 347.
dc.identifier.citedreferenceKelvin L. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. C.J. Clay and Sons, Cambridge University Press Warehouse; 1904.
dc.identifier.citedreferenceRosanoff MA. On Fischer’s classification of stereo‐isomers. J Am Chem Soc. 1906; 28 ( 1 ): 114 ‐ 121.
dc.identifier.citedreferenceBijvoet JM, Peerdeman AF, Van Bommel AJ. Determination of the absolute configuration of optically active compounds by means of X‐rays. Nature. 1951; 168 ( 4268 ): 271 ‐ 272.
dc.identifier.citedreferenceLutz M, Schreurs AMM. Was Bijvoet right? Sodium rubidium (+)‐tartrate tetrahydrate revisited. Acta Crystallogr Sect C Cryst Struct Commun. 2008; 64 ( 8 ): m296 ‐ m299.
dc.identifier.citedreferenceCahn RS, Ingold CK, Prelog V. The specification of asymmetric configuration in organic chemistry. Experientia. 1956; 12 ( 3 ): 81 ‐ 94.
dc.identifier.citedreferenceLassaletta JM, Fernandez R. Atropisomerism and Axial Chirality. World Scientific; 2019.
dc.identifier.citedreferenceGoldanskii VI, Kuz’min VV. Spontaneous mirror symmetry breaking in nature and the origin of life. Paper presented at: AIP Conference Proceedings; 1988; 180: 163‐228.
dc.identifier.citedreferenceMeurer KP, Vögtle F. Helical molecules in organic chemistry. Org Chem. 1985; 1 ‐ 76.
dc.identifier.citedreferenceYang M, Kotov NA. Nanoscale helices from inorganic materials. J Mater Chem. 2011; 21 ( 19 ): 6775 ‐ 6792.
dc.identifier.citedreferenceHuang G, Mei Y. Helices in micro‐world: materials, properties, and applications. J Mater. 2015; 1 ( 4 ): 296 ‐ 306.
dc.identifier.citedreferenceMa W, Xu L, De Moura AF, et al. Chiral inorganic nanostructures. Chem Rev. 2017; 117 ( 12 ): 8041 ‐ 8093. https://doi.org/10.1021/acs.chemrev.6b00755
dc.identifier.citedreferenceIm SW, Ahn HY, Kim RM, et al. Chiral surface and geometry of metal nanocrystals. Adv Mater. 2019; 1905758: 1 ‐ 20. https://doi.org/10.1002/adma.201905758
dc.identifier.citedreferenceQiu M, Zhang L, Tang Z, Jin W, Qiu C‐W, Lei DY. 3D metaphotonic nanostructures with intrinsic chirality. Adv Funct Mater. 2018; 28 ( 45 ): 1803147.
dc.identifier.citedreferenceWang Y, Xu J, Wang Y, Chen H. Emerging chirality in nanoscience. Chem Soc Rev. 2013; 42 ( 7 ): 2930 ‐ 2962. https://doi.org/10.1039/c2cs35332f
dc.identifier.citedreferenceKuznetsova V, Gromova Y, Martinez‐Carmona M, et al. Ligand‐induced chirality and optical activity in semiconductor nanocrystals: theory and applications. Nanophotonics. 2020; 10 ( 2 ): 797 ‐ 824.
dc.identifier.citedreferenceNi B, Cölfen H. Chirality communications between inorganic and organic compounds. SmartMat. 2021; 2 ( 1 ): 17 ‐ 32.
dc.identifier.citedreferenceXiao L, An T, Wang L, Xu X, Sun H. Novel properties and applications of chiral inorganic nanostructures. Nano Today. 2020; 30: 100824. https://doi.org/10.1016/j.nantod.2019.100824
dc.identifier.citedreferenceMilton FP, Govan J, Mukhina MV, Gun’ko YK. The chiral nano‐world: chiroptically active quantum nanostructures. Nanoscale Horizons. 2016; 1 ( 1 ): 14 ‐ 26. https://doi.org/10.1039/c5nh00072f
dc.identifier.citedreferenceKumar J, Thomas KG, Liz‐Marzán LM. Nanoscale chirality in metal and semiconductor nanoparticles. Chem Commun. 2016; 52 ( 85 ): 12555 ‐ 12569. https://doi.org/10.1039/C6CC05613J
dc.identifier.citedreferenceHu Z, Meng D, Lin F, Zhu X, Fang Z, Wu X. Plasmonic circular dichroism of gold nanoparticle based nanostructures. Adv Opt Mater. 2019; 7: 1801590. https://doi.org/10.1002/adom.201801590
dc.identifier.citedreferenceCecconello A, Besteiro LV, Govorov AO, Willner I. Chiroplasmonic DNA‐based nanostructures. Nat Rev Mater. 2017; 2 ( 9 ): 17039. https://doi.org/10.1038/natrevmats.2017.39
dc.identifier.citedreferenceWen Y, He M‐Q, Yu Y‐L, Wang J‐H. Biomolecule‐mediated chiral nanostructures: a review of chiral mechanism and application. Adv Colloid Interface Sci. 2021; 289: 102376.
dc.identifier.citedreferenceLuo Y, Chi C, Jiang M, et al. Plasmonic chiral nanostructures: chiroptical effects and applications. Adv Opt Mater. 2017; 5 ( 16 ): 1700040.
dc.identifier.citedreferenceUrban MJ, Shen C, Kong X‐T, et al. Chiral plasmonic nanostructures enabled by bottom‐up approaches. Annu Rev Phys Chem. 2019; 70 ( 1 ): 275 ‐ 299. https://doi.org/10.1146/annurev-physchem-050317-021332
dc.identifier.citedreferenceYeom J, Yeom B, Chan H, et al. Chiral templating of self‐assembling nanostructures by circularly polarized light. Nat Mater. 2015; 14 ( 1 ): 66 ‐ 72. https://doi.org/10.1038/nmat4125
dc.identifier.citedreferenceKim J‐Y, Yeom J, Zhao G, et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J Am Chem Soc. 2019; 141 ( 30 ): 11739 ‐ 11744. https://doi.org/10.1021/jacs.9b00700
dc.identifier.citedreferenceSaito K, Tatsuma T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 2018; 18 ( 5 ): 3209 ‐ 3212. https://doi.org/10.1021/acs.nanolett.8b00929
dc.identifier.citedreferenceSafin F, Kolesova E, Maslov V, Gun’ko Y, Baranov A, Fedorov A. Photochemically induced circular dichroism of semiconductor quantum dots. J Phys Chem C. 2019; 123 ( 32 ): 19979 ‐ 19983.
dc.identifier.citedreferencePacholski C, Kornowski A, Weller H. Self‐assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed Engl. 2002; 41 ( 7 ): 1188 ‐ 1191.
dc.identifier.citedreferenceZhou Y, Yang M, Sun K, Tang Z, Kotov NA. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J Am Chem Soc. 2010; 132 ( 17 ): 6006 ‐ 6013. https://doi.org/10.1021/ja906894r
dc.identifier.citedreferenceTohgha U, Deol KK, Porter AG, et al. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano. 2013; 7 ( 12 ): 11094 ‐ 11102. https://doi.org/10.1021/nn404832f
dc.identifier.citedreferenceLiang Z, Bernardino K, Han J, et al. Optical anisotropy and sign reversal in layer‐by‐layer assembled films from chiral nanoparticles. Faraday Discuss. 2016; 191: 141 ‐ 157. https://doi.org/10.1039/c6fd00064a
dc.identifier.citedreferenceSuzuki N, Wang Y, Elvati P, et al. Chiral graphene quantum dots. ACS Nano. 2016; 10 ( 2 ): 1744 ‐ 1755. https://doi.org/10.1021/acsnano.5b06369
dc.identifier.citedreferenceLi SS, Liu J, Ramesar NSNS, et al. Single‐ and multi‐component chiral supraparticles as modular enantioselective catalysts. Nat Commun. 2019; 10: 4826. https://doi.org/10.1038/s41467-019-12134-4
dc.identifier.citedreferenceZhu Y, Guo J, Qiu X, Zhao S, Tang Z. Optical activity of chiral metal nanoclusters. Acc Mater Res. 2020; 2: 21 ‐ 35.
dc.identifier.citedreferenceHazen RM, Sholl DS. Chiral selection on inorganic crystalline surfaces. Nat Mater. 2003; 2 ( 6 ): 367 ‐ 374. https://doi.org/10.1038/nmat879
dc.identifier.citedreferenceSholl DS, Gellman AJ. Developing chiral surfaces for enantioselective chemical processing. AIChE J. 2009; 55 ( 10 ): 2484 ‐ 2490.
dc.identifier.citedreferenceYeom J, Santos USS, Chekini M, Cha M, de Moura AF, Kotov NAA. Chiromagnetic nanoparticles and gels. Science. 2018; 359 ( 6373 ): 309 ‐ 314. https://doi.org/10.1126/science.aao7172
dc.identifier.citedreferenceJiang S, Chekini M, Qu ZB, et al. Chiral ceramic nanoparticles and peptide catalysis. J Am Chem Soc. 2017; 139 ( 39 ): 13701 ‐ 13712. https://doi.org/10.1021/jacs.7b01445
dc.identifier.citedreferenceElliott S, Moloney M, Gun’ko Y. Chiral shells and achiral cores in CdS quantum dots. Nano Lett. 2008; 8 ( 8 ): 2452 ‐ 2457.
dc.identifier.citedreferenceNakashima T, Kobayashi Y, Kawai T. Optical activity and chiral memory of thiol‐capped CdTe nanocrystals. J Am Chem Soc. 2009; 131 ( 30 ): 10342 ‐ 10343. https://doi.org/10.1021/ja902800f
dc.identifier.citedreferenceJiang S, Chekini M, Qu Z, et al. Chiral ceramic nanoparticles of tungsten oxide and peptide catalysis. J Am Chem Soc. 2017; 139: 13701 ‐ 13712. https://doi.org/10.1021/jacs.7b01445
dc.identifier.citedreferenceMukhina MV, Maslov VG, Baranov AV, et al. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 2015; 15 ( 5 ): 2844 ‐ 2851. https://doi.org/10.1021/nl504439w
dc.identifier.citedreferenceSun M, Xu L, Qu A, et al. Site‐selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat Chem. 2018; 10 ( 8 ): 821 ‐ 830. https://doi.org/10.1038/s41557-018-0083-y
dc.identifier.citedreferenceMeng F, Morin SA, Forticaux A, Jin S. Screw dislocation driven growth of nanomaterials. Acc Chem Res. 2013; 46 ( 7 ): 1616 ‐ 1626.
dc.identifier.citedreferenceWu H, Meng F, Li L, Jin S, Zheng G. Dislocation‐driven CdS and CdSe nanowire growth. ACS Nano. 2012; 6 ( 5 ): 4461 ‐ 4468.
dc.identifier.citedreferenceAdams LLA. Hexagonal spiral growth in the absence of a substrate. Phys Rev E Stat Nonlin Soft Matter Phys. 2010; 82 ( 3 ): 31604.
dc.identifier.citedreferenceChen C‐C, Zhu C, White ER, et al. Three‐dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature. 2013; 496 ( 7443 ): 74 ‐ 77. https://doi.org/10.1038/nature12009
dc.identifier.citedreferenceBierman MJ, Lau YKA, Kvit AV, Schmitt AL, Jin S. Dislocation‐driven nanowire growth and Eshelby twist. Science. 2008; 320 ( 5879 ): 1060 ‐ 1063.
dc.identifier.citedreferenceBen‐Moshe A, da Silva A, Müller A, et al. The chain of chirality transfer in tellurium nanocrystals. Science. 2021; 372 ( 6543 ): 729 ‐ 733.
dc.identifier.citedreferenceBoles MA, Talapin DV. Self‐assembly of tetrahedral CdSe nanocrystals: effective “patchiness” via anisotropic steric interaction. J Am Chem Soc. 2014; 136 ( 16 ): 5868 ‐ 5871.
dc.identifier.citedreferenceYang YA, Wu H, Williams KR, Cao YC. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem Int Ed. 2005; 44: 6712 ‐ 6715. https://doi.org/10.1002/anie.200502279
dc.identifier.citedreferenceWang P, Yu S‐J, Govorov AO, Ouyang M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat Commun. 2017; 8: 14312. https://doi.org/10.1038/ncomms14312
dc.identifier.citedreferenceLee HE, Ahn HY, Mun J, et al. Amino‐acid‐ and peptide‐directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018; 556 ( 7701 ): 360 ‐ 364. https://doi.org/10.1038/s41586-018-0034-1
dc.identifier.citedreferenceMastroianni AJ, Claridge SA, Paul Alivisatos A. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc. 2009; 131 ( 24 ): 8455 ‐ 8459. https://doi.org/10.1021/ja808570g
dc.identifier.citedreferenceFan Z, Govorov AO. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 2010; 10 ( 7 ): 2580 ‐ 2587. https://doi.org/10.1021/nl101231b
dc.identifier.citedreferenceChen W, Bian A, Agarwal A, et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 2009; 9 ( 5 ): 2153 ‐ 2159. https://doi.org/10.1021/nl900726s
dc.identifier.citedreferenceYan W, Xu L, Xu C, et al. Self‐assembly of chiral nanoparticle pyramids with strong R/S optical activity. J Am Chem Soc. 2012; 134 ( 36 ): 15114 ‐ 15121. https://doi.org/10.1021/ja3066336
dc.identifier.citedreferenceJiang W, Qu Z, Kumar P, et al. Emergence of complexity in hierarchically organized chiral particles. Science. 2020; 368 ( 6491 ): 642 ‐ 648. https://doi.org/10.1126/science.aaz7949
dc.identifier.citedreferenceWang Y, Wang Q, Sun H, et al. Chiral transformation: from single nanowire to double helix. J Am Chem Soc. 2011; 133 ( 50 ): 20060 ‐ 20063.
dc.identifier.citedreferenceZhou Y, Ji Q, Masuda M, Kamiya S, Shimizu T. Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes. Chem Mater. 2006; 18 ( 2 ): 403 ‐ 406.
dc.identifier.citedreferenceYan J, Feng W, Kim J‐Y, et al. Self‐assembly of chiral nanoparticles into semiconductor helices with tunable near‐infrared optical activity. Chem Mater. 2020; 32 ( 1 ): 476 ‐ 488. https://doi.org/10.1021/acs.chemmater.9b04143
dc.identifier.citedreferenceSingh G, Chan H, Baskin A, et al. Self‐assembly of magnetite nanocubes into helical superstructures. Science. 2014; 345 ( 6201 ): 1149 ‐ 1153. https://doi.org/10.1126/science.1254132
dc.identifier.citedreferenceMa W, Kuang H, Wang L, et al. Chiral plasmonics of self‐assembled nanorod dimers. Sci Rep. 2013; 3: 1934. https://doi.org/10.1038/srep01934
dc.identifier.citedreferenceZhang Q, Hernandez T, Smith KW, et al. Unraveling the origin of chirality from plasmonic nanoparticle‐protein complexes. Science. 2019; 365 ( 6460 ): 1475 ‐ 1478. https://doi.org/10.1126/science.aax5415
dc.identifier.citedreferenceAuguié B, Alonso‐Gómez JL, Guerrero‐Martínez A, Liz‐Marzán LM. Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods. J Phys Chem Lett. 2011; 2 ( 8 ): 846 ‐ 851. https://doi.org/10.1021/jz200279x
dc.identifier.citedreferenceLan X, Lu X, Shen C, Ke Y, Ni W, Wang Q. Au nanorod helical superstructures with designed chirality. J Am Chem Soc. 2015; 137 ( 1 ): 457 ‐ 462. https://doi.org/10.1021/ja511333q
dc.identifier.citedreferenceKuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N. Reconfigurable 3D plasmonic metamolecules. Nat Mater. 2014; 13 ( 9 ): 862 ‐ 866. https://doi.org/10.1038/nmat4031
dc.identifier.citedreferenceQu A, Sun M, Kim J‐Y, et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat Biomed Eng. 2020; 5: 103 ‐ 113. https://doi.org/10.1038/s41551-020-00634-4
dc.identifier.citedreferenceOsipov MA, Pickup BT, Dunmur DA. A new twist to molecular chirality: intrinsic chirality indices. Mol Phys. 1995; 84: 1193 ‐ 1206. https://doi.org/10.1080/00268979500100831
dc.identifier.citedreferenceXu L, Ma W, Wang L, Xu C, Kuang H, Kotov NA. Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chem Soc Rev. 2013; 42 ( 7 ): 3114 ‐ 3126. https://doi.org/10.1039/c3cs35460a
dc.identifier.citedreferenceGoodsell DS, Olson AJ. Structural symmetry and protein function. Annu Rev Biophys Biomol Struct. 2000; 29: 105 ‐ 153.
dc.identifier.citedreferenceSilva NHCS, Vilela C, Marrucho IM, Freire CSR, Neto CP, Silvestre AJD. Protein‐based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B. 2014; 2 ( 24 ): 3715 ‐ 3740.
dc.identifier.citedreferenceMakin OS, Serpell LC. Structures for amyloid fibrils. FEBS J. 2005; 272 ( 23 ): 5950 ‐ 5961.
dc.identifier.citedreferenceFeng W, Kim J‐Y, Wang X, et al. Assembly of mesoscale helices with near‐unity enantiomeric excess and light‐matter interactions for chiral semiconductors. Sci Adv. 2017; 3 ( 2 ): e1601159. https://doi.org/10.1126/sciadv.1601159
dc.identifier.citedreferenceHao C, Xu L, Kuang H, Xu C. Artificial chiral probes and bioapplications. Adv Mater. 2019; 32: 1802075. https://doi.org/10.1002/adma.201802075
dc.identifier.citedreferenceNakanishi K, Berova N, Woody RW. Circular Dichroism: Principles and Applications. Wiley‐VCH; 2000.
dc.identifier.citedreferenceNafie LA. Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu Rev Phys Chem. 1997; 48 ( 1 ): 357 ‐ 386.
dc.identifier.citedreferenceChoi WJ, Cheng G, Huang Z, Zhang S, Norris TB, Kotov NA. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat Mater. 2019; 18 ( 8 ): 820 ‐ 826. https://doi.org/10.1038/s41563-019-0404-6
dc.identifier.citedreferenceCastiglioni E, Abbate S, Longhi G. Experimental methods for measuring optical rotatory dispersion: survey and outlook. Chirality. 2011; 23 ( 9 ): 711 ‐ 716.
dc.identifier.citedreferenceNafie LA. Vibrational optical activity: from discovery and development to future challenges. Chirality. 2020; 32 ( 5 ): 667 ‐ 692.
dc.identifier.citedreferenceBarron LD, Hecht L, McColl IH, Blanch EW. Raman optical activity comes of age. Mol Phys. 2004; 102 ( 8 ): 731 ‐ 744.
dc.identifier.citedreferenceKurouski D. Advances of vibrational circular dichroism (VCD) in bioanalytical chemistry. A review. Anal Chim Acta. 2017; 990: 54 ‐ 66.
dc.identifier.citedreferenceRanjbar B, Gill P. Circular dichroism techniques: biomolecular and nanostructural analyses – a review. Chem Biol Drug Des. 2009; 74 ( 2 ): 101 ‐ 120.
dc.identifier.citedreferenceKim Y, Yeom B, Arteaga O, et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro‐ to the nanoscale. Nat Mater. 2016; 15: 461 ‐ 468. https://doi.org/10.1038/NMAT4525
dc.identifier.citedreferenceHoussier C, Sauer K. Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. J Am Chem Soc. 1970; 92 ( 4 ): 779 ‐ 791.
dc.identifier.citedreferenceBosnich B. Application of exciton theory to the determination of the absolute configurations of inorganic complexes. Acc Chem Res. 1969; 2 ( 9 ): 266 ‐ 273.
dc.identifier.citedreferenceMason SF, Peart BJ. Crystal circular dichroism and spin‐forbidden optical activity of tris‐(diamine) cobalt (III) complexes. J Chem Soc Dalton Trans. 1977;( 9 ): 937 ‐ 941.
dc.identifier.citedreferenceEaton WA, Charney E. Near‐infrared absorption and circular dichroism spectra of ferrocytochrome c: D→ d transitions. J Chem Phys. 1969; 51 ( 10 ): 4502 ‐ 4505.
dc.identifier.citedreferenceMoloney MP, Gun’ko YK, Kelly JM. Chiral highly luminescent CdS quantum dots. Chem Commun. 2007; 7345 ( 38 ): 3900 ‐ 3902. https://doi.org/10.1039/b704636g
dc.identifier.citedreferenceTohgha U, Varga K, Balaz M. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post‐synthetic ligand exchange with d ‐ or l ‐cysteine. Chem Commun (Camb). 2013; 49 ( 18 ): 1844 ‐ 1846. https://doi.org/10.1039/c3cc37987f
dc.identifier.citedreferenceKaschke J, Blume L, Wu L, et al. A helical metamaterial for broadband circular polarization conversion. Adv Opt Mater. 2015; 3 ( 10 ): 1411 ‐ 1417. https://doi.org/10.1002/adom.201500194
dc.identifier.citedreferenceVisheratina A, Kotov NA. Inorganic nanostructures with strong Chiroptical activity. CCS Chem. 2020; 2 ( 3 ): 583 ‐ 604. https://doi.org/10.31635/ccschem.020.202000168
dc.identifier.citedreferenceGao X, Zhang X, Deng K, et al. Excitonic circular dichroism of chiral quantum rods. J Am Chem Soc. 2017; 139 ( 25 ): 8734 ‐ 8739. https://doi.org/10.1021/jacs.7b04224
dc.identifier.citedreferenceGao X, Zhang X, Zhao L, et al. Distinct excitonic circular dichroism between Wurtzite and Zincblende CdSe nanoplatelets. Nano Lett. 2018; 18 ( 11 ): 6665 ‐ 6671. https://doi.org/10.1021/acs.nanolett.8b01001
dc.identifier.citedreferenceRosenfeld L. Quantenmechanische Theorie Der Natürlichen Optischen Aktivität von Flüssigkeiten Und Gasen. Zeitschrift für Phys. 1928; 52 ( 3–4 ): 161 ‐ 174.
dc.identifier.citedreferenceLu J, Xue Y, Bernardino K, et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long‐range order. Science. 2021; 371 ( 6536 ): 1368 ‐ 1374. https://doi.org/10.1126/science.abd8576
dc.identifier.citedreferenceBaimuratov AS, Rukhlenko ID, Gun’ko YK, Baranov AV, Fedorov AV. Dislocation‐induced chirality of semiconductor nanocrystals. Nano Lett. 2015; 15 ( 3 ): 1710 ‐ 1715. https://doi.org/10.1021/nl504369x
dc.identifier.citedreferenceBaimuratov AS, Rukhlenko ID, Noskov RE, et al. Giant optical activity of quantum dots, rods, and disks with screw dislocations. Sci Rep. 2015; 5: 14712. https://doi.org/10.1038/srep14712
dc.identifier.citedreferenceKundelev EV, Orlova AO, Maslov VG, Baranov AV, Fedorov AV. Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin E6. Nanophotonics VI – Int Soc Opt Photonics. 2016; 9884: 988433.
dc.identifier.citedreferenceYeom B, Zhang H, Zhang H, et al. Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 2013; 13 ( 11 ): 5277 ‐ 5283. https://doi.org/10.1021/nl402782d
dc.identifier.citedreferenceHalasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater. 1998; 10 ( 10 ): 2753 ‐ 2769.
dc.identifier.citedreferenceBen‐Moshe A, Govorov AO, Markovich G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew Chemie Int Ed Engl. 2013; 52 ( 4 ): 1275 ‐ 1279. https://doi.org/10.1002/anie.201207489
dc.identifier.citedreferenceZhou Y, Zhu Z, Huang W, et al. Optical coupling between chiral biomolecules and semiconductor nanoparticles: size‐dependent circular dichroism absorption. Angew Chem Int Ed Engl. 2011; 50 ( 48 ): 11456 ‐ 11459. https://doi.org/10.1002/anie.201103762
dc.identifier.citedreferenceBen Moshe A, Szwarcman D, Markovich G. Size dependence of chiroptical activity in colloidal quantum dots. ACS Nano. 2011; 5 ( 11 ): 9034 ‐ 9043. https://doi.org/10.1021/nn203234b
dc.identifier.citedreferenceBen‐Moshe A, Wolf SG, Sadan MB, et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat Commun. 2014; 5: 4302. https://doi.org/10.1038/ncomms5302
dc.identifier.citedreferenceSang Y, Han J, Zhao T, Duan P, Liu M. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv Mater. 2019; 1900110: 1 ‐ 33. https://doi.org/10.1002/adma.201900110
dc.identifier.citedreferenceLu X, Wu J, Zhu Q, et al. Circular dichroism from single plasmonic nanostructures with extrinsic chirality. Nanoscale. 2014; 6 ( 23 ): 14244 ‐ 14253. https://doi.org/10.1039/c4nr04433a
dc.identifier.citedreferenceLosada M, Xu Y. Chirality transfer through hydrogen‐bonding: experimental and Ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys Chem Chem Phys. 2007; 9 ( 24 ): 3127 ‐ 3135.
dc.identifier.citedreferenceLee H, Kim RM, Ahn H, Rho J, Nam KT. Cysteine‐encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat Commun. 2020; 11 ( 263 ): 1 ‐ 10. https://doi.org/10.1038/s41467-019-14117-x
dc.identifier.citedreferenceLee HE, Lee J, Ju M, et al. Identifying peptide sequences that can control the assembly of gold nanostructures. Mol Syst Des Eng. 2018; 3 ( 3 ): 581 ‐ 590. https://doi.org/10.1039/c7me00091j
dc.identifier.citedreferenceJi B, Panfil YE, Waiskopf N, Remennik S, Popov I, Banin U. Strain‐controlled shell morphology on quantum rods. Nat Commun. 2019; 10 ( 1 ): 1 ‐ 9. https://doi.org/10.1038/s41467-018-07837-z
dc.identifier.citedreferenceGonzález‐Rubio G, Mosquera J, Kumar V, et al. Micelle‐directed chiral seeded growth on anisotropic gold nanocrystals. Science. 2020; 368 ( 6498 ): 1472 ‐ 1477. https://doi.org/10.1126/science.aba0980
dc.identifier.citedreferenceDe Yoreo JJ, Gilbert PUPA, Sommerdijk NAJMJM, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science. 2015; 349 ( 6247 ): aaa6760. https://doi.org/10.1126/science.aaa6760
dc.identifier.citedreferenceSau TK, Murphy CJ. Room temperature, high‐yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004; 126 ( 28 ): 8648 ‐ 8649.
dc.identifier.citedreferenceKuo C‐H, Huang MH. Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir. 2005; 21 ( 5 ): 2012 ‐ 2016.
dc.identifier.citedreferenceSilvera Batista CA, Larson RG, Kotov NA. Nonadditivity of nanoparticle interactions. Science. 2015; 350 ( 6257 ): 1242477 https://doi.org/10.1126/science.1242477
dc.identifier.citedreferenceGuerrero‐Martínez A, Alonso‐Gómez JL, Auguié B, Cid MM, Liz‐Marzán LM. From individual to collective chirality in metal nanoparticles. Nano Today. 2011; 6 ( 4 ): 381 ‐ 400. https://doi.org/10.1016/j.nantod.2011.06.003
dc.identifier.citedreferenceKuzyk A, Jungmann R, Acuna GP, Liu N. DNA origami route for nanophotonics. ACS Photonics. 2018; 5 ( 4 ): 1151 ‐ 1163. https://doi.org/10.1021/acsphotonics.7b01580
dc.identifier.citedreferenceShemer G, Krichevski O, Markovich G, Molotsky T, Lubitz I, Kotlyar AB. chirality of Silver nanoparticles synthesized on DNA. J Am Chem Soc. 2006; 128 ( 34 ): 11006 ‐ 11007. https://doi.org/10.1021/ja063702i
dc.identifier.citedreferenceChen C‐L, Zhang P, Rosi NL. A new peptide‐based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J Am Chem Soc. 2008; 130 ( 41 ): 13555 ‐ 13557. https://doi.org/10.1021/ja805683r
dc.identifier.citedreferenceKuzyk A, Schreiber R, Fan Z, et al. DNA‐based self‐assembly of chiral plasmonic nanostructures with tailored optical response. Nature. 2012; 483 ( 7389 ): 311 ‐ 314. https://doi.org/10.1038/nature10889
dc.identifier.citedreferenceWu X, Xu L, Liu L, et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J Am Chem Soc. 2013; 135 ( 49 ): 18629 ‐ 18636.
dc.identifier.citedreferenceLan X, Liu T, Wang Z, Govorov AO, Yan H, Liu Y. DNA‐guided plasmonic helix with switchable chirality. J Am Chem Soc. 2018; 140 ( 37 ): 11763 ‐ 11770. https://doi.org/10.1021/jacs.8b06526
dc.identifier.citedreferenceNakano T, Okamoto Y. Synthetic helical polymers: conformation and function. Chem Rev. 2001; 101 ( 12 ): 4013 ‐ 4038. https://doi.org/10.1021/cr0000978
dc.identifier.citedreferenceIvanov VK, Fedorov PP, Baranchikov AY, Osiko VV. Oriented attachment of particles: 100 years of investigations of non‐classical crystal growth. Russ Chem Rev. 2014; 83 ( 12 ): 1204 ‐ 1222. https://doi.org/10.1016/b978-0-08-012210-6.50078-8
dc.identifier.citedreferenceTang Z, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science. 2002; 297 ( 5579 ): 237 ‐ 240.
dc.identifier.citedreferenceNakouzi E, Soltis JA, Legg BA, et al. Impact of solution chemistry and particle anisotropy on the collective dynamics of oriented aggregation. ACS Nano. 2018; 12 ( 10 ): 10114 ‐ 10122.
dc.identifier.citedreferenceZhang H, Banfield JF. Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J Phys Chem Lett. 2012; 3 ( 19 ): 2882 ‐ 2886.
dc.identifier.citedreferenceYang M, Sun K, Kotov NA. Formation and assembly‐disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions. J Am Chem Soc. 2010; 132 ( 6 ): 1860 ‐ 1872. https://doi.org/10.1021/ja906868h
dc.identifier.citedreferenceZhu C, Liang S, Song E, et al. In‐situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat Commun. 2018; 9 ( 1 ): 1 ‐ 7.
dc.identifier.citedreferenceYuk JM, Park J, Ercius P, et al. High‐resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 2012; 336 ( 6077 ): 61 ‐ 64. https://doi.org/10.1126/science.1217654
dc.identifier.citedreferenceLi D, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ. Direction‐specific interactions control crystal growth by oriented attachment. Science. 2012; 336: 1014 ‐ 1018.
dc.identifier.citedreferencePenn RL, Banfield JF. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO 2. Am Mineral. 1998; 83 ( 9–10 ): 1077 ‐ 1082.
dc.identifier.citedreferencePenn RL, Banfield JF. Imperfect oriented attachment: dislocation generation in defect‐free nanocrystals. Science. 1998; 281 ( 5379 ): 969 ‐ 971. https://doi.org/10.1126/science.281.5379.969
dc.identifier.citedreferenceBanfiel JF, Welch SA, Zhang H, Ebert TT, Penn RL. Aggregation‐based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science. 2000; 289 ( 5480 ): 751 ‐ 754. https://doi.org/10.1126/science.277.5327.788
dc.identifier.citedreferenceLu W, Gao P, Jian WB, Wang ZL, Fang J. Perfect orientation ordered in‐situ one‐dimensional self‐assembly of Mn‐doped PbSe nanocrystals. J Am Chem Soc. 2004; 126 ( 45 ): 14816 ‐ 14821.
dc.identifier.citedreferenceZhang H, Huang F, Gilbert B, Banfield JF. Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J Phys Chem B. 2003; 107 ( 47 ): 13051 ‐ 13060.
dc.identifier.citedreferenceOndry JC, Hauwiller MR, Alivisatos P. Dynamics and removal pathway of edge dislocations in imperfectly attached PbTe nanocrystal pairs: toward design rules for oriented attachment. ACS Nano. 2018; 12 ( 4 ): 3178 ‐ 3189. https://doi.org/10.1021/acsnano.8b00638
dc.identifier.citedreferenceTsai MH, Chen SY, Shen P. Imperfect oriented attachment: accretion and defect generation of nanosize rutile condensates. Nano Lett. 2004; 4 ( 7 ): 1197 ‐ 1201.
dc.identifier.citedreferenceLiang H, Rossouw D, Zhao H, et al. Asymmetric silver “ nanocarrot ” structures: solution synthesis and their asymmetric plasmonic resonances. J Am Chem Soc. 2013; 135 ( 26 ): 9616 ‐ 9619. https://doi.org/10.1021/ja404345s
dc.identifier.citedreferenceReddy SS, Berchmans LJ, Sreedhar G. Imperfect oriented attachment of lanthanum hydroxide nanoparticles. CrstEngComm. 2019; 21 ( 25 ): 3829 ‐ 3835.
dc.identifier.citedreferenceFaccin GM, Pereira ZS, da Silva EZ. How crystallization affects the oriented attachment of silver nanocrystals. J Phys Chem C. 2021; 125 ( 12 ): 6812 ‐ 6820.
dc.identifier.citedreferenceWang PP, Yu SJ, Ouyang M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. J Am Chem Soc. 2017; 139 ( 17 ): 6070 ‐ 6073. https://doi.org/10.1021/jacs.7b02523
dc.identifier.citedreferenceSrivastava S, Santos A, Critchley K, et al. Light‐controlled self‐assembly of semiconductor nanoparticles into twisted ribbons. Science. 2010; 327 ( 5971 ): 1355 ‐ 1359. https://doi.org/10.1126/science.1177218
dc.identifier.citedreferenceFeringa BL, van Delden RA. Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed Engl. 1999; 38 ( 23 ): 3418 ‐ 3438. https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V
dc.identifier.citedreferenceTran VT, Lee DK, Kim J, Jeong KJ, Kim CS, Lee J. Magnetic layer‐by‐layer assembly: from linear plasmonic polymers to oligomers. ACS Appl Mater Interfaces. 2020; 12 ( 14 ): 16584 ‐ 16591. https://doi.org/10.1021/acsami.9b22684
dc.identifier.citedreferenceJeong K‐J, Lee DK, Tran VT, et al. Helical magnetic field‐induced real‐time plasmonic chirality modulation. ACS Nano. 2020; 14 ( 6 ): 7152 ‐ 7160. https://doi.org/10.1021/acsnano.0c02026
dc.identifier.citedreferenceMa F, Wang S, Wu DT, Wu N. Electric‐field‐induced assembly and propulsion of chiral colloidal clusters. Proc Natl Acad Sci U S A. 2015; 112 ( 20 ): 6307 ‐ 6312. https://doi.org/10.1073/pnas.1502141112
dc.identifier.citedreferenceDecher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997; 277 ( 5330 ): 1232 ‐ 1237. https://doi.org/10.1126/science.277.5330.1232
dc.identifier.citedreferenceKotov NA. Ordered layered assemblies of nanoparticles. MRS Bull. 2001; 26 ( 12 ): 992 ‐ 997.
dc.identifier.citedreferenceLutkenhaus JL, Hammond PT. Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter. 2007; 3 ( 7 ): 804 ‐ 816. https://doi.org/10.1039/b701203a
dc.identifier.citedreferenceAriga K, Hill JP, Ji Q, et al. Layer‐by‐layer assembly as a versatile bottom‐up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys. 2007; 9 ( 19 ): 2319 ‐ 2340. https://doi.org/10.1039/b700410a
dc.identifier.citedreferenceShiratori SS, Rubner MF. PH‐dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules. 2000; 33 ( 11 ): 4213 ‐ 4219. https://doi.org/10.1021/ma991645q
dc.identifier.citedreferenceKotov NA, Dékány I, Fendler JH. Ultrathin graphite oxide‐polyelectrolyte composites prepared by self‐assembly: transition between conductive and non‐conductive states. Adv Mater. 1996; 8 ( 8 ): 637 ‐ 641. https://doi.org/10.1002/adma.19960080806
dc.identifier.citedreferenceHaddad A, Aharoni H, Sharon E, Shtukenberg AG, Kahr B, Efrati E. Twist renormalization in molecular crystals driven by geometric frustration. Soft Matter. 2019; 15 ( 1 ): 116 ‐ 126. https://doi.org/10.1039/C8SM01290C
dc.identifier.citedreferenceXia Y, Nguyen TDTD, Yang M, et al. Self‐assembly of self‐limiting monodisperse supraparticles from polydisperse nanoparticles. Nat Nanotechnol. 2011; 6 ( 9 ): 580 ‐ 587. https://doi.org/10.1038/nnano.2011.121
dc.identifier.citedreferencePark J, Nguyen TD, de Queirós Silveira G, et al. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nat Commun. 2014; 5: 3593. https://doi.org/10.1038/ncomms4593
dc.identifier.citedreferenceYang Y, Meyer RB, Hagan MF. Self‐limited self‐assembly of chiral filaments. Phys Rev Lett. 2010; 104 ( 25 ): 258102. https://doi.org/10.1103/PhysRevLett.104.258102
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.