Show simple item record

Bioregions are predominantly climatic for fishes of northern lakes

dc.contributor.authorLoewen, Charlie J. G.
dc.contributor.authorJackson, Donald A.
dc.contributor.authorChu, Cindy
dc.contributor.authorAlofs, Karen M.
dc.contributor.authorHansen, Gretchen J. A.
dc.contributor.authorHonsey, Andrew E.
dc.contributor.authorMinns, Charles K.
dc.contributor.authorWehrly, Kevin E.
dc.date.accessioned2022-01-06T15:51:26Z
dc.date.available2023-03-06 10:51:24en
dc.date.available2022-01-06T15:51:26Z
dc.date.issued2022-02
dc.identifier.citationLoewen, Charlie J. G.; Jackson, Donald A.; Chu, Cindy; Alofs, Karen M.; Hansen, Gretchen J. A.; Honsey, Andrew E.; Minns, Charles K.; Wehrly, Kevin E. (2022). "Bioregions are predominantly climatic for fishes of northern lakes." Global Ecology and Biogeography (2): 233-246.
dc.identifier.issn1466-822X
dc.identifier.issn1466-8238
dc.identifier.urihttps://hdl.handle.net/2027.42/171225
dc.description.abstractAimRecurrent species assemblages integrate important biotic interactions and joint responses to environmental and spatial filters that enable local coexistence. Here, we applied a bipartite (site–species) network approach to develop a natural typology of lakes sharing distinct fish faunas and provide a detailed, hierarchical view of their bioregions. We then compared the roles of key biogeographical factors to evaluate alternative hypotheses about how fish communities are assembled from the regional species pool.LocationOntario, Canada and the Upper Midwest, USA.Time period1957–2017.Major taxa studiedFreshwater fishes.MethodsBipartite modularity analysis was performed on 90 taxa from 10,016 inland lakes in the Southwestern Hudson Bay, Mississippi River and St. Lawrence River drainages, uncovering bioregionalization of North American fishes at a large, subcontinental scale. We then used a latent variable approach, pairing non‐metric partial least‐squares structural equation modelling with multiple logistic regression, to show differences in the biogeographical templates of each type of community. Indicators of contemporary and historical connectivity, climate and habitat constructs were estimated using a geographical information system.ResultsFish assemblages reflected broad, overlapping patterns of postglacial colonization, climate and geological setting, but community differentiation was most linked to temperature, precipitation and, for certain groups, lake area and water quality. Bioregions were also marked by non‐native species, showing broad‐scale impacts of introductions to the Great Lakes and surrounding basins.Main conclusionsThe dominant effects of climate across broad spatial gradients indicate differing sensitivities of fish communities to rapidly accelerating climate change and opportunities for targeted conservation strategies. By assessing biological variation at the level of recurrent assemblages, we accounted for the non‐stationarity of macroecological processes structuring different sets of species on the landscape and offer novel inference on the assembly of inland fish communities.
dc.publisherOntario Ministry of Natural Resources
dc.publisherWiley Periodicals, Inc.
dc.subject.othercommunity assembly
dc.subject.otherconservation biogeography
dc.subject.otherenvironmental filtering
dc.subject.otherfreshwater fishes
dc.subject.otherlake connectivity
dc.subject.otherlatent variable approach
dc.subject.othernetwork modularity
dc.subject.otherspecies sorting
dc.subject.otherbioregionalization
dc.subject.otherclimate change adaptation
dc.titleBioregions are predominantly climatic for fishes of northern lakes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171225/1/geb13424-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171225/2/geb13424_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171225/3/geb13424.pdf
dc.identifier.doi10.1111/geb.13424
dc.identifier.sourceGlobal Ecology and Biogeography
dc.identifier.citedreferenceNeff, M. R., & Jackson, D. A. ( 2012 ). Geology as a structuring mechanism of stream fish communities. Transactions of the American Fisheries Society, 141 ( 4 ), 962 – 974. https://doi.org/10.1080/00028487.2012.676591
dc.identifier.citedreferenceLoewen, C. J. G., Strecker, A. L., Gilbert, B., & Jackson, D. A. ( 2020 ). Climate warming moderates the impacts of introduced sportfish on multiple dimensions of prey biodiversity. Global Change Biology, 26 ( 9 ), 4937 – 4951. https://doi.org/10.1111/gcb.15225
dc.identifier.citedreferenceLynch, A. J., Myers, B. J. E., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P., Krabbenhoft, T. J., Kwak, T. J., Lyons, J., Paukert, C. P., & Whitney, J. E. ( 2016 ). Climate change effects on North American inland fish populations and assemblages. Fisheries, 41 ( 7 ), 346 – 361. https://doi.org/10.1080/03632415.2016.1186016
dc.identifier.citedreferenceMacArthur, R. H., & Wilson, E. O. ( 1963 ). An equilibrium theory of insular zoogeography. Evolution, 17 ( 4 ), 373 – 387. https://doi.org/10.1111/j.1558‐5646.1963.tb03295.x
dc.identifier.citedreferenceMagnuson, J. J., Crowder, L. B., & Medvick, P. A. ( 1979 ). Temperature as an ecological resource. American Zoology, 19 ( 1 ), 331 – 343. https://doi.org/10.1093/icb/19.1.331
dc.identifier.citedreferenceMandrak, N. E. ( 1995 ). Biogeographic patterns of fish species richness in Ontario lakes in relation to historical and environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52 ( 7 ), 1462 – 1474. https://doi.org/10.1139/f95‐141
dc.identifier.citedreferenceMandrak, N. E., & Crossman, E. J. ( 1992 ). Postglacial dispersal of freshwater fishes into Ontario. Canadian Journal of Zoology, 70 ( 11 ), 2247 – 2259. https://doi.org/10.1139/z92‐302
dc.identifier.citedreferenceMantyka‐Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S., & Rhodes, J. R. ( 2014 ). Understanding and predicting the combined effects of climate change and land‐use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology ( 3 ), 51, 572 – 581. https://doi.org/10.1111/1365‐2664.12236
dc.identifier.citedreferenceMcGarvey, D. J., & Veech, J. A. ( 2018 ). Modular structure in fish co‐occurrence networks: A comparison across spatial scales and grouping methodologies. PLoS One, 13 ( 12 ), e0208720. https://doi.org/10.1371/journal.pone.0208720
dc.identifier.citedreferenceMelles, S. J., Chu, C., Alofs, K. M., & Jackson, D. A. ( 2015 ). Potential spread of Great Lakes fishes given climate change and proposed dams: An approach using circuit theory to evaluate invasion risk. Landscape Ecology, 30 ( 5 ), 919 – 935. https://doi.org/10.1007/s10980‐014‐0114‐z
dc.identifier.citedreferenceMitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. International Journal of Climatology, 25 ( 6 ), 693 – 712. https://doi.org/10.1002/joc.1181
dc.identifier.citedreferenceMontalvo‐Mancheno, C. S., Ondei, S., Brook, B. W., & Buettel, J. C. ( 2020 ). Bioregionalization approaches for conservation: Methods, biases, and their implications for Australian biodiversity. Biodiversity and Conservation, 29 ( 1 ), 1 – 17. https://doi.org/10.1007/s10531‐019‐01913‐6
dc.identifier.citedreferenceNotaro, M., Bennington, V., & Vavrus, S. ( 2015 ). Dynamically downscaled projections of lake‐effect snow in the Great Lakes Basin. Journal of Climate, 28 ( 4 ), 1661 – 1684. https://doi.org/10.1175/JCLI‐D‐14‐00467.1
dc.identifier.citedreferenceOikonomou, A., Leprieur, F., & Leonardos, I. D. ( 2014 ). Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia, 738 ( 1 ), 205 – 220. https://doi.org/10.1007/s10750‐014‐1930‐5
dc.identifier.citedreferenceOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. ( 2020 ). vegan: Community ecology package. R package version 2.5‐7. https://CRAN.R‐project.org/package=vegan
dc.identifier.citedreferenceOlden, J. D., Kennard, M. J., Leprieur, F., Tedesco, P. A., Winemiller, K. O., & García‐Berthou, E. ( 2010 ). Conservation biogeography of freshwater fishes: Recent progress and future challenges. Diversity and Distributions, 16 ( 3 ), 496 – 513. https://doi.org/10.1111/j.1472‐4642.2010.00655.x
dc.identifier.citedreferenceOlden, J. D., Kennard, M. J., & Pusey, B. J. ( 2008 ). Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 17 ( 1 ), 25 – 37. https://doi.org/10.1111/j.1466‐8238.2007.00340.x
dc.identifier.citedreferenceOrtega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A., & Bini, L. M. ( 2020 ). Negative effect of turbidity on prey capture for both visual and non‐visual aquatic predators. Journal of Animal Ecology, 89 ( 11 ), 2427 – 2439. https://doi.org/10.1111/1365‐2656.13329
dc.identifier.citedreferencePetrarca, F., Russolillo, G., & Trinchera, L. ( 2017 ). Integrating non‐metric data in partial least squares path models: Methods and application. In H. Latan, & R. Noonan (Eds.), Partial least squares path modeling (pp. 259 – 279 ). Springer International Publishing.
dc.identifier.citedreferenceR Core Team. ( 2019 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
dc.identifier.citedreferenceReid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. ( 2019 ). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews ( 3 ), 94, 849 – 873. https://doi.org/10.1111/brv.12480
dc.identifier.citedreferenceRosvall, M., & Bergstrom, C. T. ( 2008 ). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 4 ), 1118 – 1123. https://doi.org/10.1073/pnas.0706851105
dc.identifier.citedreferenceSanchez, G. ( 2013 ). PLS path modeling with R. Trowchez Editions.
dc.identifier.citedreferenceSanchez, G., Trinchera, L., & Russolillo, G. ( 2017 ). plspm: Tools for partial least squares path modeling (PLS‐PM). R package version 0.4.9. https://CRAN.R‐project.org/package=plspm
dc.identifier.citedreferenceSandstrom, S., Rawson, M., & Lester, N. P. ( 2013 ). Manual of instructions for broad‐scale fish community monitoring using North American (NA1) and Ontario small mesh (ON2) gillnets. Ontario Ministry of Natural Resources.
dc.identifier.citedreferenceShuter, B. J., & Post, J. R. ( 1990 ). Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society, 119 ( 2 ), 314 – 336.
dc.identifier.citedreferenceSmith, C. L., & Powell, C. R. ( 1971 ). The summer fish communities of Brier Creek, Marshall County, Oklahoma. No. 2458. American Museum of Natural History. http://hdl.handle.net/2246/2666
dc.identifier.citedreferenceStrona, G., Nappo, D., Boccacci, F., Fattorini, S., & San‐Miguel‐Ayanz, J. ( 2014 ). A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nature Communications, 5 ( 1 ), 4114. https://doi.org/10.1038/ncomms5114
dc.identifier.citedreferenceThébault, E. ( 2013 ). Identifying compartments in presence–absence matrices and bipartite networks: Insights into modularity measures. Journal of Biogeography, 40 ( 4 ), 759 – 768. https://doi.org/10.1111/jbi.12015
dc.identifier.citedreferenceTilzer, M. M. ( 1988 ). Secchi disk — chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia, 162 ( 2 ), 163 – 171. https://doi.org/10.1007/BF00014539
dc.identifier.citedreferenceTjur, T. ( 2009 ). Coefficients of determination in logistic regression models—a new proposal: The coefficient of discrimination. The American Statistician, 63 ( 4 ), 366 – 372. https://doi.org/10.1198/tast.2009.08210
dc.identifier.citedreferenceTonn, W. M., & Magnuson, J. J. ( 1982 ). Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology, 63 ( 4 ), 1149 – 1166. https://doi.org/10.2307/1937251
dc.identifier.citedreferenceWang, T., Hamann, A., Spittlehouse, D., & Carroll, C. ( 2016 ). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One, 11 ( 6 ), e0156720. https://doi.org/10.1371/journal.pone.0156720
dc.identifier.citedreferenceWehrly, K. E., Breck, J. E., Wang, L., & Szabo‐Kraft, L. ( 2012 ). A landscape‐based classification of fish assemblages in sampled and unsampled lakes. Transactions of the American Fisheries Society, 141 ( 2 ), 414 – 425. https://doi.org/10.1080/00028487.2012.667046
dc.identifier.citedreferenceWehrly, K. E., Carter, G. S., & Breck, J. E. ( 2021 ). Standardized sampling methods for the inland lakes status and trends program. Fisheries Special Report. Michigan Department of Natural Resources.
dc.identifier.citedreferenceD’Arcy, P., & Carignan, R. ( 1997 ). Influence of catchment topography on water chemistry in southeastern Québec Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 10 ), 2215 – 2227. https://doi.org/10.1139/f97‐129
dc.identifier.citedreferenceDias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.‐F., Brosse, S., Grenouillet, G., & Tedesco, P. A. ( 2014 ). Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17 ( 9 ), 1130 – 1140. https://doi.org/10.1111/ele.12319
dc.identifier.citedreferenceDodge, D. P., Goodchild, G. A., Tilt, J. C., Waldriff, D. G., & MacRitchie, I. ( 1987 ). Manual of instructions: Aquatic habitat inventory surveys. Ontario Ministry of Natural Resources.
dc.identifier.citedreferenceAbell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., … Petry, P. ( 2008 ). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58 ( 5 ), 403 – 414. https://doi.org/10.1641/B580507
dc.identifier.citedreferenceAlofs, K. M., Jackson, D. A., & Lester, N. P. ( 2014 ). Ontario freshwater fishes demonstrate differing range‐boundary shifts in a warming climate. Diversity and Distributions, 20 ( 2 ), 123 – 136. https://doi.org/10.1111/ddi.12130
dc.identifier.citedreferenceBailey, R. M., & Smith, G. R. ( 1981 ). Origin and geography of the fish fauna of the Laurentian Great Lakes Basin. Canadian Journal of Fisheries and Aquatic Sciences, 38 ( 12 ), 1539 – 1561. https://doi.org/10.1139/f81‐206
dc.identifier.citedreferenceBarbosa, A. M., Real, R., Muñoz, A.‐R., & Brown, J. A. ( 2015 ). New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, 19 ( 10 ), 1333 – 1338. https://doi.org/10.1111/ddi.12100
dc.identifier.citedreferenceBeckett, S. J. ( 2016 ). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3 ( 1 ), 140536. https://doi.org/10.1098/rsos.140536
dc.identifier.citedreferenceBernardo‐Madrid, R., Calatayud, J., González‐Suárez, M., Rosvall, M., Lucas, P. M., Rueda, M., Antonelli, A., & Revilla, E. ( 2019 ). Human activity is altering the world’s zoogeographical regions. Ecology Letters ( 8 ), 22, 1297 – 1305. https://doi.org/10.1111/ele.13321
dc.identifier.citedreferenceBloomfield, N. J., Knerr, N., & Encinas‐Viso, F. ( 2018 ). A comparison of network and clustering methods to detect biogeographical regions. Ecography, 41 ( 1 ), 1 – 10. https://doi.org/10.1111/ecog.02596
dc.identifier.citedreferenceBrooks, T. M., Mittermeier, R. A., da Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., & Rodrigues, A. S. L. ( 2006 ). Global biodiversity conservation priorities. Science, 313 ( 5783 ), 58 – 61. https://doi.org/10.1126/science.1127609
dc.identifier.citedreferenceCarstensen, D. W., & Olesen, J. M. ( 2009 ). Wallacea and its nectarivorous birds: Nestedness and modules. Journal of Biogeography, 36 ( 8 ), 1540 – 1550. https://doi.org/10.1111/j.1365‐2699.2009.02098.x
dc.identifier.citedreferenceCazelles, K., Bartley, T., Guzzo, M. M., Brice, M.‐H., MacDougall, A. S., Bennett, J. R., Esch, E. H., Kadoya, T., Kelly, J., Matsuzaki, S.‐I., Nilsson, K. A., & McCann, K. S. ( 2019 ). Homogenization of freshwater lakes: Recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Global Change Biology, 25 ( 12 ), 4222 – 4233. https://doi.org/10.1111/gcb.14829
dc.identifier.citedreferenceComte, L., & Olden, J. D. ( 2018 ). Evidence for dispersal syndromes in freshwater fishes. Proceedings of the Royal Society B: Biological Sciences, 285 ( 1871 ), 20172214. https://doi.org/10.1098/rspb.2017.2214
dc.identifier.citedreferenceConroy, N., & Keller, W. ( 1976 ). Geological factors affecting biological activity in Precambrian shield lakes. The Canadian Mineralogist, 14, 62 – 72.
dc.identifier.citedreferenceCordero, R. D., & Jackson, D. A. ( 2019 ). Species‐pair associations, null models, and test of mechanisms structuring ecological communities. Ecosphere, 10 ( 7 ), e02797. https://doi.org/10.1002/ecs2.2797
dc.identifier.citedreferenceDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. ( 2013 ). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36 ( 1 ), 27 – 46. https://doi.org/10.1111/j.1600‐0587.2012.07348.x
dc.identifier.citedreferenceDormann, C. F., Gruber, B., & Fründ, J. ( 2008 ). Introducing the bipartite package: Analysing ecological networks. R News, 8, 8 – 11.
dc.identifier.citedreferenceDrake, M. T., & Pereira, D. L. ( 2002 ). Development of a fish‐based index of biotic integrity for small inland lakes in Central Minnesota. North American Journal of Fisheries Management, 22 ( 4 ), 1105 – 1123.
dc.identifier.citedreferenceDrake, M. T., & Valley, R. D. ( 2005 ). Validation and application of a fish‐based index of biotic integrity for small central Minnesota lakes. North American Journal of Fisheries Management, 25 ( 3 ), 1095 – 1111. https://doi.org/10.1577/M04‐128.1
dc.identifier.citedreferenceDyke, A. S. ( 2004 ). An outline of North American deglaciation with emphasis on central and northern Canada. Geological Survey of Canada.
dc.identifier.citedreferenceEdler, D., Guedes, T., Zizka, A., Rosvall, M., & Antonelli, A. ( 2017 ). Infomap bioregions: Interactive mapping of biogeographical regions from species distributions. Systematic Biology, 66 ( 2 ), 197 – 204.
dc.identifier.citedreferenceFicetola, G. F., Mazel, F., & Thuiller, W. ( 2017 ). Global determinants of zoogeographical boundaries. Nature Ecology and Evolution, 1 ( 4 ), 0089. https://doi.org/10.1038/s41559‐017‐0089
dc.identifier.citedreferenceFinigan, P. A., Mandrak, N. E., & Tufts, B. L. ( 2018 ). Large‐scale changes in the littoral fish communities of lakes in southeastern Ontario, Canada. Canadian Journal of Zoology, 96 ( 7 ), 753 – 759. https://doi.org/10.1139/cjz‐2017‐0080
dc.identifier.citedreferenceGuimerà, R., & Amaral, L. A. N. ( 2005 ). Functional cartography of complex metabolic networks. Nature, 433 ( 7028 ), 895 – 900. https://doi.org/10.1038/nature03288
dc.identifier.citedreferenceHarmann, J., & Moosdoft, N. ( 2012 ). The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13, Q12004.
dc.identifier.citedreferenceHeino, J., Alahuhta, J., Bini, L. M., Cai, Y., Heiskanen, A.‐S., Hellsten, S., Kortelainen, P., Kotamäki, N., Tolonen, K. T., Vihervaara, P., Vilmi, A., & Angeler, D. G. ( 2021 ). Lakes in the era of global change: Moving beyond single‐lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews, 96 ( 1 ), 89 – 106. https://doi.org/10.1111/brv.12647
dc.identifier.citedreferenceHerrera‐R, G. A., Oberdorff, T., Anderson, E. P., Brosse, S., Carvajal‐Vallejos, F. M., Frederico, R. G., Hidalgo, M., Jézéquel, C., Maldonado, M., Maldonado‐Ocampo, J. A., Ortega, H., Radinger, J., Torrente‐Vilara, G., Zuanon, J., & Tedesco, P. A. ( 2020 ). The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 26 ( 10 ), 5509 – 5523. https://doi.org/10.1111/gcb.15285
dc.identifier.citedreferenceHitt, N. P., & Angermeier, P. L. ( 2008 ). Evidence for fish dispersal from spatial analysis of stream network topology. Journal of the North American Benthological Society, 27 ( 2 ), 304 – 320. https://doi.org/10.1899/07‐096.1
dc.identifier.citedreferenceJackson, D. A., & Harvey, H. H. ( 1997 ). Qualitative and quantitative sampling of lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 12 ), 2807 – 2813. https://doi.org/10.1139/f97‐182
dc.identifier.citedreferenceJackson, D. A., Peres‐Neto, P. R., & Olden, J. D. ( 2001 ). What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157 – 170. https://doi.org/10.1139/f00‐239
dc.identifier.citedreferenceKeller, W. B., Heneberry, J., & Edwards, B. A. ( 2019 ). Recovery of acidified Sudbury, Ontario, Canada, lakes: A multi‐decade synthesis and update. Environmental Reviews, 27 ( 1 ), 1 – 16. https://doi.org/10.1139/er‐2018‐0018
dc.identifier.citedreferenceLansac‐Tôha, F. M., Bini, L. M., Heino, J., Meira, B. R., Segovia, B. T., Pavanelli, C. S., Bonecker, C. C., Deus, C. P., Benedito, E., Alves, G. M., Manetta, G. I., Dias, J. D., Vieira, L. C. G., Rodrigues, L. C., Carmo Roberto, M., Brugler, M. R., Lemke, M. J., Tessler, M., DeSalle, R., … Velho, L. F. M. ( 2021 ). Scale‐dependent patterns of metacommunity structuring in aquatic organisms across floodplain systems. Journal of Biogeography ( 4 ), 48, 872 – 885. https://doi.org/10.1111/jbi.14044
dc.identifier.citedreferenceLarsson, J. ( 2020 ). eulerr: Area‐proportional Euler and Venn diagrams with ellipses. R package version 6.1.0. https://CRAN.R‐project.org/package=eulerr
dc.identifier.citedreferenceLegendre, P., & Legendre, V. ( 1984 ). Postglacial dispersal of freshwater fishes in the Québec Peninsula. Canadian Journal of Fisheries and Aquatic Sciences, 41 ( 12 ), 1781 – 1802. https://doi.org/10.1139/f84‐220
dc.identifier.citedreferenceLeroy, B., Dias, M. S., Giraud, E., Hugueny, B., Jézéquel, C., Leprieur, F., Oberdorff, T., & Tedesco, P. A. ( 2019 ). Global biogeographical regions of freshwater fish species. Journal of Biogeography, 46 ( 11 ), 2407 – 2419. https://doi.org/10.1111/jbi.13674
dc.identifier.citedreferenceLester, N. P., Dextrase, A. J., Kushneriuk, R. S., Rawson, M. R., & Ryan, P. A. ( 2004 ). Light and temperature: Key factors affecting walleye abundance and production. Transactions of the American Fisheries Society, 133 ( 3 ), 588 – 605. https://doi.org/10.1577/T02‐111.1
dc.identifier.citedreferenceLester, N. P., Marshall, T. R., Armstrong, K., Dunlop, W. I., & Ritchie, B. ( 2003 ). A broad‐scale approach to management of Ontario’s recreational fisheries. North American Journal of Fisheries Management, 23 ( 4 ), 1312 – 1328. https://doi.org/10.1577/M01‐230AM
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.