Bioregions are predominantly climatic for fishes of northern lakes
dc.contributor.author | Loewen, Charlie J. G. | |
dc.contributor.author | Jackson, Donald A. | |
dc.contributor.author | Chu, Cindy | |
dc.contributor.author | Alofs, Karen M. | |
dc.contributor.author | Hansen, Gretchen J. A. | |
dc.contributor.author | Honsey, Andrew E. | |
dc.contributor.author | Minns, Charles K. | |
dc.contributor.author | Wehrly, Kevin E. | |
dc.date.accessioned | 2022-01-06T15:51:26Z | |
dc.date.available | 2023-03-06 10:51:24 | en |
dc.date.available | 2022-01-06T15:51:26Z | |
dc.date.issued | 2022-02 | |
dc.identifier.citation | Loewen, Charlie J. G.; Jackson, Donald A.; Chu, Cindy; Alofs, Karen M.; Hansen, Gretchen J. A.; Honsey, Andrew E.; Minns, Charles K.; Wehrly, Kevin E. (2022). "Bioregions are predominantly climatic for fishes of northern lakes." Global Ecology and Biogeography (2): 233-246. | |
dc.identifier.issn | 1466-822X | |
dc.identifier.issn | 1466-8238 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/171225 | |
dc.description.abstract | AimRecurrent species assemblages integrate important biotic interactions and joint responses to environmental and spatial filters that enable local coexistence. Here, we applied a bipartite (site–species) network approach to develop a natural typology of lakes sharing distinct fish faunas and provide a detailed, hierarchical view of their bioregions. We then compared the roles of key biogeographical factors to evaluate alternative hypotheses about how fish communities are assembled from the regional species pool.LocationOntario, Canada and the Upper Midwest, USA.Time period1957–2017.Major taxa studiedFreshwater fishes.MethodsBipartite modularity analysis was performed on 90 taxa from 10,016 inland lakes in the Southwestern Hudson Bay, Mississippi River and St. Lawrence River drainages, uncovering bioregionalization of North American fishes at a large, subcontinental scale. We then used a latent variable approach, pairing non‐metric partial least‐squares structural equation modelling with multiple logistic regression, to show differences in the biogeographical templates of each type of community. Indicators of contemporary and historical connectivity, climate and habitat constructs were estimated using a geographical information system.ResultsFish assemblages reflected broad, overlapping patterns of postglacial colonization, climate and geological setting, but community differentiation was most linked to temperature, precipitation and, for certain groups, lake area and water quality. Bioregions were also marked by non‐native species, showing broad‐scale impacts of introductions to the Great Lakes and surrounding basins.Main conclusionsThe dominant effects of climate across broad spatial gradients indicate differing sensitivities of fish communities to rapidly accelerating climate change and opportunities for targeted conservation strategies. By assessing biological variation at the level of recurrent assemblages, we accounted for the non‐stationarity of macroecological processes structuring different sets of species on the landscape and offer novel inference on the assembly of inland fish communities. | |
dc.publisher | Ontario Ministry of Natural Resources | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | community assembly | |
dc.subject.other | conservation biogeography | |
dc.subject.other | environmental filtering | |
dc.subject.other | freshwater fishes | |
dc.subject.other | lake connectivity | |
dc.subject.other | latent variable approach | |
dc.subject.other | network modularity | |
dc.subject.other | species sorting | |
dc.subject.other | bioregionalization | |
dc.subject.other | climate change adaptation | |
dc.title | Bioregions are predominantly climatic for fishes of northern lakes | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geology and Earth Sciences | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171225/1/geb13424-sup-0001-Supinfo.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171225/2/geb13424_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171225/3/geb13424.pdf | |
dc.identifier.doi | 10.1111/geb.13424 | |
dc.identifier.source | Global Ecology and Biogeography | |
dc.identifier.citedreference | Neff, M. R., & Jackson, D. A. ( 2012 ). Geology as a structuring mechanism of stream fish communities. Transactions of the American Fisheries Society, 141 ( 4 ), 962 – 974. https://doi.org/10.1080/00028487.2012.676591 | |
dc.identifier.citedreference | Loewen, C. J. G., Strecker, A. L., Gilbert, B., & Jackson, D. A. ( 2020 ). Climate warming moderates the impacts of introduced sportfish on multiple dimensions of prey biodiversity. Global Change Biology, 26 ( 9 ), 4937 – 4951. https://doi.org/10.1111/gcb.15225 | |
dc.identifier.citedreference | Lynch, A. J., Myers, B. J. E., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P., Krabbenhoft, T. J., Kwak, T. J., Lyons, J., Paukert, C. P., & Whitney, J. E. ( 2016 ). Climate change effects on North American inland fish populations and assemblages. Fisheries, 41 ( 7 ), 346 – 361. https://doi.org/10.1080/03632415.2016.1186016 | |
dc.identifier.citedreference | MacArthur, R. H., & Wilson, E. O. ( 1963 ). An equilibrium theory of insular zoogeography. Evolution, 17 ( 4 ), 373 – 387. https://doi.org/10.1111/j.1558‐5646.1963.tb03295.x | |
dc.identifier.citedreference | Magnuson, J. J., Crowder, L. B., & Medvick, P. A. ( 1979 ). Temperature as an ecological resource. American Zoology, 19 ( 1 ), 331 – 343. https://doi.org/10.1093/icb/19.1.331 | |
dc.identifier.citedreference | Mandrak, N. E. ( 1995 ). Biogeographic patterns of fish species richness in Ontario lakes in relation to historical and environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52 ( 7 ), 1462 – 1474. https://doi.org/10.1139/f95‐141 | |
dc.identifier.citedreference | Mandrak, N. E., & Crossman, E. J. ( 1992 ). Postglacial dispersal of freshwater fishes into Ontario. Canadian Journal of Zoology, 70 ( 11 ), 2247 – 2259. https://doi.org/10.1139/z92‐302 | |
dc.identifier.citedreference | Mantyka‐Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S., & Rhodes, J. R. ( 2014 ). Understanding and predicting the combined effects of climate change and land‐use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology ( 3 ), 51, 572 – 581. https://doi.org/10.1111/1365‐2664.12236 | |
dc.identifier.citedreference | McGarvey, D. J., & Veech, J. A. ( 2018 ). Modular structure in fish co‐occurrence networks: A comparison across spatial scales and grouping methodologies. PLoS One, 13 ( 12 ), e0208720. https://doi.org/10.1371/journal.pone.0208720 | |
dc.identifier.citedreference | Melles, S. J., Chu, C., Alofs, K. M., & Jackson, D. A. ( 2015 ). Potential spread of Great Lakes fishes given climate change and proposed dams: An approach using circuit theory to evaluate invasion risk. Landscape Ecology, 30 ( 5 ), 919 – 935. https://doi.org/10.1007/s10980‐014‐0114‐z | |
dc.identifier.citedreference | Mitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. International Journal of Climatology, 25 ( 6 ), 693 – 712. https://doi.org/10.1002/joc.1181 | |
dc.identifier.citedreference | Montalvo‐Mancheno, C. S., Ondei, S., Brook, B. W., & Buettel, J. C. ( 2020 ). Bioregionalization approaches for conservation: Methods, biases, and their implications for Australian biodiversity. Biodiversity and Conservation, 29 ( 1 ), 1 – 17. https://doi.org/10.1007/s10531‐019‐01913‐6 | |
dc.identifier.citedreference | Notaro, M., Bennington, V., & Vavrus, S. ( 2015 ). Dynamically downscaled projections of lake‐effect snow in the Great Lakes Basin. Journal of Climate, 28 ( 4 ), 1661 – 1684. https://doi.org/10.1175/JCLI‐D‐14‐00467.1 | |
dc.identifier.citedreference | Oikonomou, A., Leprieur, F., & Leonardos, I. D. ( 2014 ). Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia, 738 ( 1 ), 205 – 220. https://doi.org/10.1007/s10750‐014‐1930‐5 | |
dc.identifier.citedreference | Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. ( 2020 ). vegan: Community ecology package. R package version 2.5‐7. https://CRAN.R‐project.org/package=vegan | |
dc.identifier.citedreference | Olden, J. D., Kennard, M. J., Leprieur, F., Tedesco, P. A., Winemiller, K. O., & García‐Berthou, E. ( 2010 ). Conservation biogeography of freshwater fishes: Recent progress and future challenges. Diversity and Distributions, 16 ( 3 ), 496 – 513. https://doi.org/10.1111/j.1472‐4642.2010.00655.x | |
dc.identifier.citedreference | Olden, J. D., Kennard, M. J., & Pusey, B. J. ( 2008 ). Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 17 ( 1 ), 25 – 37. https://doi.org/10.1111/j.1466‐8238.2007.00340.x | |
dc.identifier.citedreference | Ortega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A., & Bini, L. M. ( 2020 ). Negative effect of turbidity on prey capture for both visual and non‐visual aquatic predators. Journal of Animal Ecology, 89 ( 11 ), 2427 – 2439. https://doi.org/10.1111/1365‐2656.13329 | |
dc.identifier.citedreference | Petrarca, F., Russolillo, G., & Trinchera, L. ( 2017 ). Integrating non‐metric data in partial least squares path models: Methods and application. In H. Latan, & R. Noonan (Eds.), Partial least squares path modeling (pp. 259 – 279 ). Springer International Publishing. | |
dc.identifier.citedreference | R Core Team. ( 2019 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/ | |
dc.identifier.citedreference | Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. ( 2019 ). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews ( 3 ), 94, 849 – 873. https://doi.org/10.1111/brv.12480 | |
dc.identifier.citedreference | Rosvall, M., & Bergstrom, C. T. ( 2008 ). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 4 ), 1118 – 1123. https://doi.org/10.1073/pnas.0706851105 | |
dc.identifier.citedreference | Sanchez, G. ( 2013 ). PLS path modeling with R. Trowchez Editions. | |
dc.identifier.citedreference | Sanchez, G., Trinchera, L., & Russolillo, G. ( 2017 ). plspm: Tools for partial least squares path modeling (PLS‐PM). R package version 0.4.9. https://CRAN.R‐project.org/package=plspm | |
dc.identifier.citedreference | Sandstrom, S., Rawson, M., & Lester, N. P. ( 2013 ). Manual of instructions for broad‐scale fish community monitoring using North American (NA1) and Ontario small mesh (ON2) gillnets. Ontario Ministry of Natural Resources. | |
dc.identifier.citedreference | Shuter, B. J., & Post, J. R. ( 1990 ). Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society, 119 ( 2 ), 314 – 336. | |
dc.identifier.citedreference | Smith, C. L., & Powell, C. R. ( 1971 ). The summer fish communities of Brier Creek, Marshall County, Oklahoma. No. 2458. American Museum of Natural History. http://hdl.handle.net/2246/2666 | |
dc.identifier.citedreference | Strona, G., Nappo, D., Boccacci, F., Fattorini, S., & San‐Miguel‐Ayanz, J. ( 2014 ). A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nature Communications, 5 ( 1 ), 4114. https://doi.org/10.1038/ncomms5114 | |
dc.identifier.citedreference | Thébault, E. ( 2013 ). Identifying compartments in presence–absence matrices and bipartite networks: Insights into modularity measures. Journal of Biogeography, 40 ( 4 ), 759 – 768. https://doi.org/10.1111/jbi.12015 | |
dc.identifier.citedreference | Tilzer, M. M. ( 1988 ). Secchi disk — chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia, 162 ( 2 ), 163 – 171. https://doi.org/10.1007/BF00014539 | |
dc.identifier.citedreference | Tjur, T. ( 2009 ). Coefficients of determination in logistic regression models—a new proposal: The coefficient of discrimination. The American Statistician, 63 ( 4 ), 366 – 372. https://doi.org/10.1198/tast.2009.08210 | |
dc.identifier.citedreference | Tonn, W. M., & Magnuson, J. J. ( 1982 ). Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology, 63 ( 4 ), 1149 – 1166. https://doi.org/10.2307/1937251 | |
dc.identifier.citedreference | Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. ( 2016 ). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One, 11 ( 6 ), e0156720. https://doi.org/10.1371/journal.pone.0156720 | |
dc.identifier.citedreference | Wehrly, K. E., Breck, J. E., Wang, L., & Szabo‐Kraft, L. ( 2012 ). A landscape‐based classification of fish assemblages in sampled and unsampled lakes. Transactions of the American Fisheries Society, 141 ( 2 ), 414 – 425. https://doi.org/10.1080/00028487.2012.667046 | |
dc.identifier.citedreference | Wehrly, K. E., Carter, G. S., & Breck, J. E. ( 2021 ). Standardized sampling methods for the inland lakes status and trends program. Fisheries Special Report. Michigan Department of Natural Resources. | |
dc.identifier.citedreference | D’Arcy, P., & Carignan, R. ( 1997 ). Influence of catchment topography on water chemistry in southeastern Québec Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 10 ), 2215 – 2227. https://doi.org/10.1139/f97‐129 | |
dc.identifier.citedreference | Dias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.‐F., Brosse, S., Grenouillet, G., & Tedesco, P. A. ( 2014 ). Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17 ( 9 ), 1130 – 1140. https://doi.org/10.1111/ele.12319 | |
dc.identifier.citedreference | Dodge, D. P., Goodchild, G. A., Tilt, J. C., Waldriff, D. G., & MacRitchie, I. ( 1987 ). Manual of instructions: Aquatic habitat inventory surveys. Ontario Ministry of Natural Resources. | |
dc.identifier.citedreference | Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., … Petry, P. ( 2008 ). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58 ( 5 ), 403 – 414. https://doi.org/10.1641/B580507 | |
dc.identifier.citedreference | Alofs, K. M., Jackson, D. A., & Lester, N. P. ( 2014 ). Ontario freshwater fishes demonstrate differing range‐boundary shifts in a warming climate. Diversity and Distributions, 20 ( 2 ), 123 – 136. https://doi.org/10.1111/ddi.12130 | |
dc.identifier.citedreference | Bailey, R. M., & Smith, G. R. ( 1981 ). Origin and geography of the fish fauna of the Laurentian Great Lakes Basin. Canadian Journal of Fisheries and Aquatic Sciences, 38 ( 12 ), 1539 – 1561. https://doi.org/10.1139/f81‐206 | |
dc.identifier.citedreference | Barbosa, A. M., Real, R., Muñoz, A.‐R., & Brown, J. A. ( 2015 ). New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, 19 ( 10 ), 1333 – 1338. https://doi.org/10.1111/ddi.12100 | |
dc.identifier.citedreference | Beckett, S. J. ( 2016 ). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3 ( 1 ), 140536. https://doi.org/10.1098/rsos.140536 | |
dc.identifier.citedreference | Bernardo‐Madrid, R., Calatayud, J., González‐Suárez, M., Rosvall, M., Lucas, P. M., Rueda, M., Antonelli, A., & Revilla, E. ( 2019 ). Human activity is altering the world’s zoogeographical regions. Ecology Letters ( 8 ), 22, 1297 – 1305. https://doi.org/10.1111/ele.13321 | |
dc.identifier.citedreference | Bloomfield, N. J., Knerr, N., & Encinas‐Viso, F. ( 2018 ). A comparison of network and clustering methods to detect biogeographical regions. Ecography, 41 ( 1 ), 1 – 10. https://doi.org/10.1111/ecog.02596 | |
dc.identifier.citedreference | Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., & Rodrigues, A. S. L. ( 2006 ). Global biodiversity conservation priorities. Science, 313 ( 5783 ), 58 – 61. https://doi.org/10.1126/science.1127609 | |
dc.identifier.citedreference | Carstensen, D. W., & Olesen, J. M. ( 2009 ). Wallacea and its nectarivorous birds: Nestedness and modules. Journal of Biogeography, 36 ( 8 ), 1540 – 1550. https://doi.org/10.1111/j.1365‐2699.2009.02098.x | |
dc.identifier.citedreference | Cazelles, K., Bartley, T., Guzzo, M. M., Brice, M.‐H., MacDougall, A. S., Bennett, J. R., Esch, E. H., Kadoya, T., Kelly, J., Matsuzaki, S.‐I., Nilsson, K. A., & McCann, K. S. ( 2019 ). Homogenization of freshwater lakes: Recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Global Change Biology, 25 ( 12 ), 4222 – 4233. https://doi.org/10.1111/gcb.14829 | |
dc.identifier.citedreference | Comte, L., & Olden, J. D. ( 2018 ). Evidence for dispersal syndromes in freshwater fishes. Proceedings of the Royal Society B: Biological Sciences, 285 ( 1871 ), 20172214. https://doi.org/10.1098/rspb.2017.2214 | |
dc.identifier.citedreference | Conroy, N., & Keller, W. ( 1976 ). Geological factors affecting biological activity in Precambrian shield lakes. The Canadian Mineralogist, 14, 62 – 72. | |
dc.identifier.citedreference | Cordero, R. D., & Jackson, D. A. ( 2019 ). Species‐pair associations, null models, and test of mechanisms structuring ecological communities. Ecosphere, 10 ( 7 ), e02797. https://doi.org/10.1002/ecs2.2797 | |
dc.identifier.citedreference | Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. ( 2013 ). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36 ( 1 ), 27 – 46. https://doi.org/10.1111/j.1600‐0587.2012.07348.x | |
dc.identifier.citedreference | Dormann, C. F., Gruber, B., & Fründ, J. ( 2008 ). Introducing the bipartite package: Analysing ecological networks. R News, 8, 8 – 11. | |
dc.identifier.citedreference | Drake, M. T., & Pereira, D. L. ( 2002 ). Development of a fish‐based index of biotic integrity for small inland lakes in Central Minnesota. North American Journal of Fisheries Management, 22 ( 4 ), 1105 – 1123. | |
dc.identifier.citedreference | Drake, M. T., & Valley, R. D. ( 2005 ). Validation and application of a fish‐based index of biotic integrity for small central Minnesota lakes. North American Journal of Fisheries Management, 25 ( 3 ), 1095 – 1111. https://doi.org/10.1577/M04‐128.1 | |
dc.identifier.citedreference | Dyke, A. S. ( 2004 ). An outline of North American deglaciation with emphasis on central and northern Canada. Geological Survey of Canada. | |
dc.identifier.citedreference | Edler, D., Guedes, T., Zizka, A., Rosvall, M., & Antonelli, A. ( 2017 ). Infomap bioregions: Interactive mapping of biogeographical regions from species distributions. Systematic Biology, 66 ( 2 ), 197 – 204. | |
dc.identifier.citedreference | Ficetola, G. F., Mazel, F., & Thuiller, W. ( 2017 ). Global determinants of zoogeographical boundaries. Nature Ecology and Evolution, 1 ( 4 ), 0089. https://doi.org/10.1038/s41559‐017‐0089 | |
dc.identifier.citedreference | Finigan, P. A., Mandrak, N. E., & Tufts, B. L. ( 2018 ). Large‐scale changes in the littoral fish communities of lakes in southeastern Ontario, Canada. Canadian Journal of Zoology, 96 ( 7 ), 753 – 759. https://doi.org/10.1139/cjz‐2017‐0080 | |
dc.identifier.citedreference | Guimerà, R., & Amaral, L. A. N. ( 2005 ). Functional cartography of complex metabolic networks. Nature, 433 ( 7028 ), 895 – 900. https://doi.org/10.1038/nature03288 | |
dc.identifier.citedreference | Harmann, J., & Moosdoft, N. ( 2012 ). The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13, Q12004. | |
dc.identifier.citedreference | Heino, J., Alahuhta, J., Bini, L. M., Cai, Y., Heiskanen, A.‐S., Hellsten, S., Kortelainen, P., Kotamäki, N., Tolonen, K. T., Vihervaara, P., Vilmi, A., & Angeler, D. G. ( 2021 ). Lakes in the era of global change: Moving beyond single‐lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews, 96 ( 1 ), 89 – 106. https://doi.org/10.1111/brv.12647 | |
dc.identifier.citedreference | Herrera‐R, G. A., Oberdorff, T., Anderson, E. P., Brosse, S., Carvajal‐Vallejos, F. M., Frederico, R. G., Hidalgo, M., Jézéquel, C., Maldonado, M., Maldonado‐Ocampo, J. A., Ortega, H., Radinger, J., Torrente‐Vilara, G., Zuanon, J., & Tedesco, P. A. ( 2020 ). The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 26 ( 10 ), 5509 – 5523. https://doi.org/10.1111/gcb.15285 | |
dc.identifier.citedreference | Hitt, N. P., & Angermeier, P. L. ( 2008 ). Evidence for fish dispersal from spatial analysis of stream network topology. Journal of the North American Benthological Society, 27 ( 2 ), 304 – 320. https://doi.org/10.1899/07‐096.1 | |
dc.identifier.citedreference | Jackson, D. A., & Harvey, H. H. ( 1997 ). Qualitative and quantitative sampling of lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 12 ), 2807 – 2813. https://doi.org/10.1139/f97‐182 | |
dc.identifier.citedreference | Jackson, D. A., Peres‐Neto, P. R., & Olden, J. D. ( 2001 ). What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157 – 170. https://doi.org/10.1139/f00‐239 | |
dc.identifier.citedreference | Keller, W. B., Heneberry, J., & Edwards, B. A. ( 2019 ). Recovery of acidified Sudbury, Ontario, Canada, lakes: A multi‐decade synthesis and update. Environmental Reviews, 27 ( 1 ), 1 – 16. https://doi.org/10.1139/er‐2018‐0018 | |
dc.identifier.citedreference | Lansac‐Tôha, F. M., Bini, L. M., Heino, J., Meira, B. R., Segovia, B. T., Pavanelli, C. S., Bonecker, C. C., Deus, C. P., Benedito, E., Alves, G. M., Manetta, G. I., Dias, J. D., Vieira, L. C. G., Rodrigues, L. C., Carmo Roberto, M., Brugler, M. R., Lemke, M. J., Tessler, M., DeSalle, R., … Velho, L. F. M. ( 2021 ). Scale‐dependent patterns of metacommunity structuring in aquatic organisms across floodplain systems. Journal of Biogeography ( 4 ), 48, 872 – 885. https://doi.org/10.1111/jbi.14044 | |
dc.identifier.citedreference | Larsson, J. ( 2020 ). eulerr: Area‐proportional Euler and Venn diagrams with ellipses. R package version 6.1.0. https://CRAN.R‐project.org/package=eulerr | |
dc.identifier.citedreference | Legendre, P., & Legendre, V. ( 1984 ). Postglacial dispersal of freshwater fishes in the Québec Peninsula. Canadian Journal of Fisheries and Aquatic Sciences, 41 ( 12 ), 1781 – 1802. https://doi.org/10.1139/f84‐220 | |
dc.identifier.citedreference | Leroy, B., Dias, M. S., Giraud, E., Hugueny, B., Jézéquel, C., Leprieur, F., Oberdorff, T., & Tedesco, P. A. ( 2019 ). Global biogeographical regions of freshwater fish species. Journal of Biogeography, 46 ( 11 ), 2407 – 2419. https://doi.org/10.1111/jbi.13674 | |
dc.identifier.citedreference | Lester, N. P., Dextrase, A. J., Kushneriuk, R. S., Rawson, M. R., & Ryan, P. A. ( 2004 ). Light and temperature: Key factors affecting walleye abundance and production. Transactions of the American Fisheries Society, 133 ( 3 ), 588 – 605. https://doi.org/10.1577/T02‐111.1 | |
dc.identifier.citedreference | Lester, N. P., Marshall, T. R., Armstrong, K., Dunlop, W. I., & Ritchie, B. ( 2003 ). A broad‐scale approach to management of Ontario’s recreational fisheries. North American Journal of Fisheries Management, 23 ( 4 ), 1312 – 1328. https://doi.org/10.1577/M01‐230AM | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.