Show simple item record

Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries

dc.contributor.authorYan, Yichao
dc.contributor.authorVogt, David B.
dc.contributor.authorVaid, Thomas P.
dc.contributor.authorSigman, Matthew S.
dc.contributor.authorSanford, Melanie S.
dc.date.accessioned2022-01-06T15:51:38Z
dc.date.available2023-01-06 10:51:36en
dc.date.available2022-01-06T15:51:38Z
dc.date.issued2021-12-20
dc.identifier.citationYan, Yichao; Vogt, David B.; Vaid, Thomas P.; Sigman, Matthew S.; Sanford, Melanie S. (2021). "Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries." Angewandte Chemie International Edition 60(52): 27039-27045.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/171229
dc.description.abstractThis report describes the design of diaminocyclopropenium‐phenothiazine hybrid catholytes for non‐aqueous redox flow batteries. The molecules are synthesized in a rapid and modular fashion by appending a diaminocyclopropenium (DAC) substituent to the nitrogen of the phenothiazine. Combining a versatile C‐N coupling protocol (which provides access to diverse derivatives) with computation and structure‐property analysis enabled the identification of a catholyte that displays stable two‐electron cycling at potentials of 0.64 and 1.00 V vs. Fc/Fc+ as well as high solubility in all oxidation states (≥0.45 M in TBAPF6/MeCN). This catholyte was deployed in a high energy density two‐electron RFB, exhibiting >90 % capacity retention over 266 hours of flow cell cycling at >0.5 M electron concentration.Through rational molecular design, simple chemical synthesis, and structure–property computation analysis, a new catholyte with high potential, two‐electron transfer, and high solubility is developed for non‐aqueous redox flow batteries.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphenothiazine
dc.subject.othercatholytes
dc.subject.othercyclopropenium
dc.subject.otherorganic redox flow batteries
dc.titleDevelopment of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171229/1/anie202111939.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171229/2/anie202111939-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171229/3/anie202111939_am.pdf
dc.identifier.doi10.1002/anie.202111939
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceC. F. Elliott, K. E. Fraser, S. A. Odom, C. Risko, J. Phys. Chem. A 2021, 125, 272 – 278.
dc.identifier.citedreferenceJ. Chai, A. Lashgari, X. Wang, C. K. Williams, J. “Jimmy” Jiang, J. Mater. Chem. A 2020, 8, 15715 – 15724.
dc.identifier.citedreferenceT. P. Vaid, M. S. Sanford, Chem. Commun. 2019, 55, 11037 – 11040.
dc.identifier.citedreferenceL. Zhang, Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, X. Guo, W. Wang, G. Yu, Nat. Commun. 2020, 11, 3843.
dc.identifier.citedreferenceJ. D. Milshtein, A. P. Kaur, M. D. Casselman, J. A. Kowalski, S. Modekrutti, P. L. Zhang, N. Harsha Attanayake, C. F. Elliott, S. R. Parkin, C. Risko, F. R. Brushett, S. A. Odom, Energy Environ. Sci. 2016, 9, 3531 – 3543.
dc.identifier.citedreferenceA. P. Kaur, O. C. Harris, N. H. Attanayake, Z. Liang, S. R. Parkin, M. H. Tang, S. A. Odom, Chem. Mater. 2020, 32, 3007 – 3017.
dc.identifier.citedreferenceN. H. Attanayake, J. A. Kowalski, K. V. Greco, M. D. Casselman, J. D. Milshtein, S. J. Chapman, S. R. Parkin, F. R. Brushett, S. A. Odom, Chem. Mater. 2019, 31, 4353 – 4363.
dc.identifier.citedreferenceS. Ergun, C. F. Elliott, A. Preet Kaur, S. R. Parkin, S. A. Odom, Chem. Commun. 2014, 50, 5339 – 5341.
dc.identifier.citedreferenceA. Preet Kaur, S. Ergun, C. F. Elliott, S. A. Odom, J. Mater. Chem. A 2014, 2, 18190 – 18193.
dc.identifier.citedreferenceN. Harsha Attanayake, Z. Liang, Y. Wang, A. Preet Kaur, S. R. Parkin, J. K. Mobley, R. H. Ewoldt, J. Landon, S. A. Odom, Mater. Adv. 2021, 2, 1390 – 1401.
dc.identifier.citedreferenceY. Yan, S. G. Robinson, T. P. Vaid, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2021, https://doi.org/10.1021/jacs.1c07237.
dc.identifier.citedreferenceM. Park, J. Ryu, W. Wang, J. Cho, Nat. Rev. Mater. 2016, 2, 1 – 18.
dc.identifier.citedreferenceC. S. Sevov, S. K. Samaroo, M. S. Sanford, Adv. Energy Mater. 2017, 7, 1602027.
dc.identifier.citedreferenceS. G. Robinson, Y. Yan, K. H. Hendriks, M. S. Sanford, M. S. Sigman, J. Am. Chem. Soc. 2019, 141, 10171 – 10176.
dc.identifier.citedreferenceY. Yan, S. G. Robinson, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 15301 – 15306.
dc.identifier.citedreferenceK. H. Hendriks, S. G. Robinson, M. N. Braten, C. S. Sevov, B. A. Helms, M. S. Sigman, S. D. Minteer, M. S. Sanford, ACS Cent. Sci. 2018, 4, 189 – 196.
dc.identifier.citedreferenceM. Kuroboshi, T. Yamamoto, H. Tanaka, Synlett 2013, 24, 197 – 200.
dc.identifier.citedreferenceJ. Chai, A. Lashgari, Z. Cao, C. K. Williams, X. Wang, J. Dong, J. “Jimmy” Jiang, ACS Appl. Mater. Interfaces 2020, 12, 15262 – 15270.
dc.identifier.citedreferenceThe 4-DMPP cycling data shows an uptick in discharge capacity at ≈40 cycles, which was observed across two repeats of this experiment (see Figure S11). This may be due to cell equilibration, but we do not have a complete explanation at this time.
dc.identifier.citedreferenceH. Huang, Z. M. Strater, M. Rauch, J. Shee, T. J. Sisto, C. Nuckolls, T. H. Lambert, Angew. Chem. Int. Ed. 2019, 58, 13318 – 13322; Angew. Chem. 2019, 131, 13452 – 13456.
dc.identifier.citedreferenceK. Gong, Q. Fang, S. Gu, S. F. Y. Li, Y. Yan, Energy Environ. Sci. 2015, 8, 3515 – 3530.
dc.identifier.citedreferenceX. Wei, L. Cosimbescu, W. Xu, J. Z. Hu, M. Vijayakumar, J. Feng, M. Y. Hu, X. Deng, J. Xiao, J. Liu, V. Sprenkle, W. Wang, Adv. Energy Mater. 2015, 5, 1400678.
dc.identifier.citedreferenceWhile the maximum solubility of 4-DMPP ++ is 0.45 M (electron concentration=0.9 M) in 0.5 M TBAPF 6 /MeCN, the symmetrical battery setup also requires the addition of 0.6 M of 5 to the electrolyte solution. To minimize the impact of the viologen on the 4-DMPP solubility (related to the common ion effect) and to minimize the viscosity of the resulting solution, we chose to use 0.3 M 4-DMPP (0.6 M electron concentration) in this experiment.
dc.identifier.citedreferenceSince this battery runs for a relatively long time (>266 hours), the solvent slowly evaporates and bubbles develop in the battery system, disturbing the charging and discharging process and thus causing fluctuations in efficiency.
dc.identifier.citedreferenceX. Wei, W. Duan, J. Huang, L. Zhang, B. Li, D. Reed, W. Xu, V. Sprenkle, W. Wang, ACS Energy Lett. 2016, 1, 705 – 711.
dc.identifier.citedreferenceR. S. Nicholson, Anal. Chem. 1965, 37, 1351 – 1355.
dc.identifier.citedreferenceJ. Rugolo, M. J. Aziz, Energy Environ. Sci. 2012, 5, 7151 – 7160.
dc.identifier.citedreferenceC. J. Barnhart, M. Dale, A. R. Brandt, S. M. Benson, Energy Environ. Sci. 2013, 6, 2804 – 2810.
dc.identifier.citedreferenceX. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, V. Sprenkle, ACS Energy Lett. 2017, 2, 2187 – 2204.
dc.identifier.citedreferenceX. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 2014, 26, 7649 – 7653.
dc.identifier.citedreferenceJ. Winsberg, T. Hagemann, S. Muench, C. Friebe, B. Häupler, T. Janoschka, S. Morgenstern, M. D. Hager, U. S. Schubert, Chem. Mater. 2016, 28, 3401 – 3405.
dc.identifier.citedreferenceC. Zhang, L. Zhang, Y. Ding, S. Peng, X. Guo, Y. Zhao, G. He, G. Yu, Energy Storage Mater. 2018, 15, 324 – 350.
dc.identifier.citedreferenceG. Kwon, S. Lee, J. Hwang, H.-S. Shim, B. Lee, M. H. Lee, Y. Ko, S.-K. Jung, K. Ku, J. Hong, K. Kang, Joule 2018, 2, 1771 – 1782.
dc.identifier.citedreferenceJ. Zhang, Z. Yang, I. A. Shkrob, R. S. Assary, S. on Tung, B. Silcox, W. Duan, J. Zhang, C. C. Su, B. Hu, B. Pan, C. Liao, Z. Zhang, W. Wang, L. A. Curtiss, L. T. Thompson, X. Wei, L. Zhang, Adv. Energy Mater. 2017, 7, 1701272.
dc.identifier.citedreferenceL. E. VanGelder, E. Schreiber, E. M. Matson, J. Mater. Chem. A 2019, 7, 4893 – 4902.
dc.identifier.citedreferenceL. E. VanGelder, A. M. Kosswattaarachchi, P. L. Forrestel, T. R. Cook, E. M. Matson, Chem. Sci. 2018, 9, 1692 – 1699.
dc.identifier.citedreferenceJ. A. Kowalski, M. D. Casselman, A. Preet Kaur, J. D. Milshtein, C. F. Elliott, S. Modekrutti, N. Harsha Attanayake, N. Zhang, S. R. Parkin, C. Risko, F. R. Brushett, S. A. Odom, J. Mater. Chem. A 2017, 5, 24371 – 24379.
dc.identifier.citedreferenceI. L. Escalante-García, J. S. Wainright, L. T. Thompson, R. F. Savinell, J. Electrochem. Soc. 2015, 162, A363 – A372.
dc.identifier.citedreferenceE. V. Carino, J. Staszak-Jirkovsky, R. S. Assary, L. A. Curtiss, N. M. Markovic, F. R. Brushett, Chem. Mater. 2016, 28, 2529 – 2539.
dc.identifier.citedreferenceB. Silcox, J. Zhang, I. A. Shkrob, L. Thompson, L. Zhang, J. Phys. Chem. C 2019, 123, 16516 – 16524.
dc.identifier.citedreferenceG. Kwon, K. Lee, M. H. Lee, B. Lee, S. Lee, S.-K. Jung, K. Ku, J. Kim, S. Y. Park, J. E. Kwon, K. Kang, Chem 2019, 5, 2642 – 2656.
dc.identifier.citedreferenceC. S. Sevov, S. L. Fisher, L. T. Thompson, M. S. Sanford, J. Am. Chem. Soc. 2016, 138, 15378 – 15384.
dc.identifier.citedreferenceW. Duan, J. Huang, J. A. Kowalski, I. A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J. D. Milshtein, B. Li, C. Liao, Z. Zhang, W. Wang, J. Liu, J. S. Moore, F. R. Brushett, L. Zhang, X. Wei, ACS Energy Lett. 2017, 2, 1156 – 1161.
dc.identifier.citedreferenceJ. Huang, L. Cheng, R. S. Assary, P. Wang, Z. Xue, A. K. Burrell, L. A. Curtiss, L. Zhang, Adv. Energy Mater. 2015, 5, 1401782.
dc.identifier.citedreferenceC. Zhang, Y. Qian, Y. Ding, L. Zhang, X. Guo, Y. Zhao, G. Yu, Angew. Chem. Int. Ed. 2019, 58, 7045 – 7050; Angew. Chem. 2019, 131, 7119 – 7124.
dc.identifier.citedreferenceC. Zhang, Z. Niu, Y. Ding, L. Zhang, Y. Zhou, X. Guo, X. Zhang, Y. Zhao, G. Yu, Chem 2018, 4, 2814 – 2825.
dc.identifier.citedreferenceK. H. Hendriks, C. S. Sevov, M. E. Cook, M. S. Sanford, ACS Energy Lett. 2017, 2, 2430 – 2435.
dc.identifier.citedreferenceB. Hu, T. L. Liu, J. Energy Chem. 2018, 27, 1326 – 1332.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.