Show simple item record

Net benefit index: Assessing the influence of a biomarker for individualized treatment rules

dc.contributor.authorZhou, Yiwang
dc.contributor.authorSong, Peter X.K.
dc.contributor.authorFu, Haoda
dc.date.accessioned2022-01-06T15:52:04Z
dc.date.available2023-01-06 10:52:02en
dc.date.available2022-01-06T15:52:04Z
dc.date.issued2021-12
dc.identifier.citationZhou, Yiwang; Song, Peter X.K.; Fu, Haoda (2021). "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules." Biometrics 77(4): 1254-1264.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/171240
dc.description.abstractOne central task in precision medicine is to establish individualized treatment rules (ITRs) for patients with heterogeneous responses to different therapies. Motivated from a randomized clinical trial for Type 2 diabetic patients on a comparison of two drugs, that is, pioglitazone and gliclazide, we consider a problem: utilizing promising candidate biomarkers to improve an existing ITR. This calls for a biomarker evaluation procedure that enables to gauge added values of individual biomarkers. We propose an assessment analytic, termed as net benefit index (NBI), that quantifies a contrast between the resulting gain and loss of treatment benefits when a biomarker enters ITR to reallocate patients in treatments. We optimize reallocation schemes via outcome weighted learning (OWL), from which the optimal treatment group labels are generated by weighted support vector machine (SVM). To account for sampling uncertainty in assessing a biomarker, we propose an NBI‐based test for a significant improvement over the existing ITR, where the empirical null distribution is constructed via the method of stratified permutation by treatment arms. Applying NBI to the motivating diabetes trial, we found that baseline fasting insulin is an important biomarker that leads to an improvement over an existing ITR based only on patient’s baseline fasting plasma glucose (FPG), age, and body mass index (BMI) to reduce FPG over a period of 52 weeks.
dc.publisherSpringer Science & Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.otherO‐learning
dc.subject.otherpersonalized medicine
dc.subject.otherclinical trial
dc.subject.otherbootstrap null distribution
dc.subject.otherbiomarker
dc.titleNet benefit index: Assessing the influence of a biomarker for individualized treatment rules
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171240/1/biom13373_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171240/2/biom13373.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171240/3/biom13373-sup-0001-SuppMat.pdf
dc.identifier.doi10.1111/biom.13373
dc.identifier.sourceBiometrics
dc.identifier.citedreferenceBerkane, M. (Ed.). ( 2012 ) Latent Variable Modeling and Applications to Causality (Vol. 120). New York, NY: Springer Science & Business Media.
dc.identifier.citedreferenceBenjamini, Y. and Hochberg, Y. ( 1995 ) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57 ( 1 ), 289 – 300.
dc.identifier.citedreferenceWatkins, C.J.C.H. ( 1989 ) Learning from Delayed Rewards. Cambridge: King’s College.
dc.identifier.citedreferenceGunter, L., Zhu, J. and Murphy, S.A. ( 2011 ) Variable selection for qualitative interactions. Statistical Methodology, 8 ( 1 ), 42 – 55.
dc.identifier.citedreferenceFan, A., Lu, W. and Song, R. ( 2016 ) Sequential advantage selection for optimal treatment regime. The Annals of Applied Statistics, 10 ( 1 ), 32.
dc.identifier.citedreferenceDasgupta, S., Goldberg, Y. and Kosorok, M.R. ( 2019 ) Feature elimination in kernel machines in moderately high dimensions. The Annals of Statistics, 47 ( 1 ), 497 – 526.
dc.identifier.citedreferenceCharbonnel, B.H., Matthews, D.R., Schernthaner, G., Hanefeld, M., Brunetti, P. and QUARTET Study Group., ( 2005 ) A long‐term comparison of pioglitazone and gliclazide in patients with Type 2 diabetes mellitus: a randomized, double‐blind, parallel‐group comparison trial. Diabetic Medicine, 22 ( 4 ), 399 – 405.
dc.identifier.citedreferenceZhao, Y., Zeng, D., Rush, A.J. and Kosorok, M.R. ( 2012 ) Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association, 107 ( 499 ), 1106 – 1118.
dc.identifier.citedreferenceVickers, A.J. and Pepe, M. ( 2014 ) Does the net reclassification improvement help us evaluate models and markers? Annals of Internal Medicine, 160 ( 2 ), 136 – 137.
dc.identifier.citedreferenceVickers, A.J. and Elkin, E.B. ( 2006 ) Decision curve analysis: a novel method for evaluating prediction models. Medical Decision Making, 26 ( 6 ), 565 – 574.
dc.identifier.citedreferenceQian, M. and Murphy, S.A. ( 2011 ) Performance guarantees for individualized treatment rules. Annals of Statistics, 39 ( 2 ), 1180.
dc.identifier.citedreferencePepe, M.S., Janes, H. and Li, C.I. ( 2014 ) Net risk reclassification p values: valid or misleading? Journal of the National Cancer Institute, 106 ( 4 ), dju041.
dc.identifier.citedreferencePencina, M.J., D’agostino, R.B. and Vasan, R.S. ( 2010 ) Statistical methods for assessment of added usefulness of new biomarkers. Clinical Chemistry and Laboratory Medicine, 48 ( 12 ), 1703 – 1711.
dc.identifier.citedreferenceMurphy, S.A., van der Laan, M.J., Robins, J.M. and Conduct Problems Prevention Research Group., ( 2001 ) Marginal mean models for dynamic regimes. Journal of the American Statistical Association, 96 ( 456 ), 1410 – 1423.
dc.identifier.citedreferenceMurphy, S.A. ( 2003 ) Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65 ( 2 ), 331 – 355.
dc.identifier.citedreferenceLu, W., Zhang, H.H. and Zeng, D. ( 2013 ) Variable selection for optimal treatment decision. Statistical Methods in Medical Research, 22 ( 5 ), 493 – 504.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.