Show simple item record

From salt to hypertension, what is missed?

dc.contributor.authorMa, Zhiyi
dc.contributor.authorHummel, Scott L.
dc.contributor.authorSun, Ningling
dc.contributor.authorChen, Yuanyuan
dc.date.accessioned2022-01-06T15:52:34Z
dc.date.available2023-01-06 10:52:32en
dc.date.available2022-01-06T15:52:34Z
dc.date.issued2021-12
dc.identifier.citationMa, Zhiyi; Hummel, Scott L.; Sun, Ningling; Chen, Yuanyuan (2021). "From salt to hypertension, what is missed?." The Journal of Clinical Hypertension 23(12): 2033-2041.
dc.identifier.issn1524-6175
dc.identifier.issn1751-7176
dc.identifier.urihttps://hdl.handle.net/2027.42/171252
dc.description.abstractExcess salt intake is viewed as a major contributor to hypertension and cardiovascular disease, and dietary salt restriction is broadly recommended by public health guidelines. However, individuals can have widely varying physiological responses to salt intake, and a tailored approach to evaluation and intervention may be needed. The traditional sodium related concepts are challenging to assess clinically for two reasons: (1) spot and 24‐hour urine sodium are frequently used to evaluate salt intake, but are more suitable for population study, and (2) some adverse effects of salt may be blood pressure‐independent. In recent years, previously unknown mechanisms of sodium absorption and storage have been discovered. This review will outline the limitations of current methods to assess sodium balance and discuss new potential evaluation methods and treatment targets.
dc.publisherWiley Periodicals, Inc.
dc.publisherWorld Health Organization (WHO)
dc.subject.otherexcretion
dc.subject.otherhypertension
dc.subject.otheroral salt tolerance
dc.subject.othersodium
dc.subject.otherstorage
dc.subject.otherabsorption
dc.titleFrom salt to hypertension, what is missed?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171252/1/jch14402.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171252/2/jch14402_am.pdf
dc.identifier.doi10.1111/jch.14402
dc.identifier.sourceThe Journal of Clinical Hypertension
dc.identifier.citedreferenceKopp C, Linz P, Maier C, et al. Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by 23Na magnetic resonance imaging. Kidney Int. 2018; 93 ( 5 ): 1191 ‐ 1197.
dc.identifier.citedreferenceJantsch J, Schatz V, Friedrich D, et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage‐driven host defense. Cell Metab. 2015; 21 ( 3 ): 493 ‐ 501.
dc.identifier.citedreferenceKopp C, Beyer C, Linz P, et al. Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na‐magnetic resonance imaging. Rheumatology (Oxford). 2017; 56 ( 4 ): 556 ‐ 560. Erratum in: Rheumatology (Oxford). 2017 Apr 1;56(4):674.
dc.identifier.citedreferenceMatthias J, Maul J, Noster R, et al. Sodium chloride is an ionic checkpoint for human TH2 cells and shapes the atopic skin microenvironment. Sci Transl Med. 2019; 11 ( 480 ): eaau0683.
dc.identifier.citedreferenceOlde Engberink RH, Rorije NM, Homan van der Heide JJ, van den Born BJ, Vogt L. Role of the vascular wall in sodium homeostasis and salt sensitivity. J Am Soc Nephrol. 2015; 26 ( 4 ): 777 ‐ 783.
dc.identifier.citedreferenceKusche‐Vihrog K, Callies C, Fels J, Oberleithner H. The epithelial sodium channel (ENaC): mediator of the aldosterone response in the vascular endothelium? Steroids. 2010; 75 ( 8‐9 ): 544 ‐ 549.
dc.identifier.citedreferenceOberleithner H, Wilhelmi M. Salt Sensitivity Determined From Capillary Blood. Kidney Blood Press Res. 2016; 41 ( 4 ): 355 ‐ 364.
dc.identifier.citedreferenceHammon M, Grossmann S, Linz P, et al. 23Na Magnetic Resonance Imaging of the Lower Leg of Acute Heart Failure Patients during Diuretic Treatment. PLoS One. 2015; 10 ( 10 ): e0141336.
dc.identifier.citedreferenceKarg MV, Bosch A, Kannenkeril D, et al. SGLT‐2‐inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol. 2018; 17 ( 1 ): 5.
dc.identifier.citedreferenceWenstedt EFE, Olde Engberink RHG, Vogt L, Sodium Handling by the Blood Vessel Wall: critical for Hypertension Development. Hypertension. 2018; 71 ( 6 ): 990 ‐ 996. https://doi.org/10.1161/HYPERTENSIONAHA.118.10211.
dc.identifier.citedreferenceSchneider MP, Raff U, Kopp C, et al. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD. J Am Soc Nephrol. 2017; 28 ( 6 ): 1867 ‐ 1876.
dc.identifier.citedreferenceHammon M, Grossmann S, Linz P, et al. 3 Tesla 23Na Magnetic Resonance Imaging During Acute Kidney Injury. Acad Radiol. 2017; 24 ( 9 ): 1086 ‐ 1093.
dc.identifier.citedreferenceNieuwdorp M, Mooij HL, Kroon J, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006; 55 ( 4 ): 1127 ‐ 1132.
dc.identifier.citedreferenceDrummer C, Gerzer R, Heer M, et al. Effects of an acute saline infusion on fluid and electrolyte metabolism in humans. Am J Physiol. 1992; 262(5Pt2): F744 ‐ 54. https://doi.org/10.1152/ajprenal.1992.262.5.F744.
dc.identifier.citedreferenceLobo DN, Simpson JA, Stanga Z, SP A. The effect of an oral glucose load on sodium and water excretion after rapid intravenous infusion of 0.9% (w/v) saline. Clin Nutr. 2003; 22 ( 3 ): 255 ‐ 259.
dc.identifier.citedreferenceNishimuta M. Characteristics of urine sodium and potassium after oral ingestion of solutions containing sodium and potassium which is isotonic to the physiological saline–a quantitative study. J Nutr Sci Vitaminol (Tokyo). 2006; 52 ( 5 ): 333 ‐ 336.
dc.identifier.citedreferenceZhiyi MA, Yuanyuan C, Zhechun Z, Ningling SUN. A New Oral Salt Tolerance Test has Acceptable Consistency for its First Volunteer. Hypertension. 2018; 72: AP402.
dc.identifier.citedreferencePeniamina R, Skeaff S, Haszard JJ, McLean R. Comparison of 24‐h Diet Records, 24‐h Urine, and Duplicate Diets for Estimating Dietary Intakes of Potassium, Sodium, and Iodine in Children. Nutrients. 2019; 11 ( 12 ): 2927.
dc.identifier.citedreferenceBazzell BG, Rainey WE, Auchus RJ, et al. Human Urinary mRNA as a Biomarker of Cardiovascular Disease. Circ Genom Precis Med. 2018; 11 ( 9 ): e002213.
dc.identifier.citedreferenceSachdeva A, Weder AB. Nocturnal sodium excretion, blood pressure dipping, and sodium sensitivity. Hypertension. 2006; 48 ( 4 ): 527 ‐ 533.
dc.identifier.citedreferenceKing AJ, Siegel M, He Y, et al. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med. 2018 Aug 29; 10 ( 456 ): eaam6474.
dc.identifier.citedreferenceBroekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010; 53 ( 12 ): 2646 ‐ 2655.
dc.identifier.citedreferenceLewis EJ, Lewis JB, Greene T, et al, Collaborative Study Group. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am J Kidney Dis. 2011; 58 ( 5 ): 729 ‐ 736. Epub 2011 Aug 26. Erratum in: Am J Kidney Dis. 2012 Feb;59(2):318.
dc.identifier.citedreferencePackham DK, Wolfe R, Reutens AT, et al, Collaborative Study Group. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol. 2012; 23 ( 1 ): 123 ‐ 130.
dc.identifier.citedreferenceOlde Engberink RH, Rorije NM, Lambers Heerspink HJ, De Zeeuw D, van den Born BJ, Vogt L. The blood pressure lowering potential of sulodexide–a systematic review and meta‐analysis. Br J Clin Pharmacol. 2015; 80 ( 6 ): 1245 ‐ 1253.
dc.identifier.citedreferenceLam CSP, Chandramouli C, Ahooja V, Verma S. SGLT‐2 Inhibitors in Heart Failure: current Management, Unmet Needs, and Therapeutic Prospects. J Am Heart Assoc. 2019; 8 ( 20 ): e013389.
dc.identifier.citedreferenceFARBER SJ, SCHUBERT M, SCHUSTER N. The binding of cations by chondroitin sulfate. J Clin Invest. 1957; 36 ( 12 ): 1715 ‐ 1722.
dc.identifier.citedreferenceMozaffarian D, Fahimi S, Singh GM, et al, for the Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NUTRICODE). Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014; 371: 624 ‐ 634.
dc.identifier.citedreferenceHe FJ, Li J, MacGregor GA. Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta‐analysis of randomised trials. BMJ. 2013; 346: f1325.
dc.identifier.citedreferenceGraudal NA, Hubeck‐Graudal T, Jurgens G. Effects of low‐sodium diet vs. high‐sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens. 2012; 25 ( 1 ): 1 ‐ 15.
dc.identifier.citedreferenceSuckling RJ, He FJ, Markandu ND, MacGregor GA. Modest salt reduction lowers blood pressure and albumin excretion in impaired glucose tolerance and type 2 diabetes mellitus: a randomized double‐blind trial. Hypertension. 2016; 67 ( 6 ): 1189 ‐ 1195.
dc.identifier.citedreferenceWHO. Guideline: Sodium intake for adults and children. World Health Organization (WHO), 2012.
dc.identifier.citedreferenceWilliams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal. 2018; 00: 1 ‐ 98.
dc.identifier.citedreferenceWhelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018; 138: e484 ‐ e594.
dc.identifier.citedreferenceWriting Group of 2018 Chinese Guidelines for the Management of Hypertension, Chinese Hypertension League, Chinese Society of Cardiology, Chinese Medical Doctor Association Hypertension Committee, Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care, Hypertension Branch of Chinese Geriatric Medical Association. 2018 Chinese guidelines for the management of hypertension. Chin J Cardiovasc Med. 2019; 24 ( 1 ): 24 ‐ 56.
dc.identifier.citedreferenceThe effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA. 1992; 267 ( 9 ): 1213 ‐ 1220. https://doi.org/10.1001/jama.1992.03480090061028. Erratum in: JAMA 1992 May 6;267(17):2330.
dc.identifier.citedreferenceTrials of Hypertension Prevention Collaborative Research Group. Effects of Weight Loss and Sodium Reduction Intervention on Blood Pressure and Hypertension Incidence in Overweight People With High‐Normal Blood Pressure: the Trials of Hypertension Prevention, Phase II. Arch Intern Med. 1997; 157 ( 6 ): 657 ‐ 667. https://doi.org/10.1001/archinte.1997.00440270105009
dc.identifier.citedreferenceCook NR, Cutler JA, Obarzanek E, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow‐up of the trials of hypertension prevention (TOHP). BMJ. 2007; 334 ( 7599 ): 885 ‐ 888.
dc.identifier.citedreferenceBibbins‐Domingo K, Chertow GM, Coxson PG, et al. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med. 2010; 362 ( 7 ): 590 ‐ 599.
dc.identifier.citedreferenceAburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and metaanalyses. BMJ. 2013; 346: f1326.
dc.identifier.citedreferenceGraudal N, Jürgens G, Baslund B, Alderman MH. Compared with usual sodium intake, low‐ and excessive‐sodium diets are associated with increased mortality: a meta‐analysis. Am J Hypertens. 2014; 27 ( 9 ): 1129 ‐ 1137.
dc.identifier.citedreferencePfister R, Michels G, Sharp SJ, Luben R, Wareham NJ, Khaw KT. Estimated urinary sodium excretion and risk of heart failure in men and women in the EPIC‐Norfolk study. Eur J Heart Fail. 2014; 16 ( 4 ): 394 ‐ 402.
dc.identifier.citedreferenceStolarz‐Skrzypek K, Kuznetsova T, Thijs L, et al, European Project on Genes in Hypertension (EPOGH) Investigators. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA. 2011; 305 ( 17 ): 1777 ‐ 1785.
dc.identifier.citedreferenceO’Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011; 306 ( 20 ): 2229 ‐ 2238.
dc.identifier.citedreferenceThomas MC, Moran J, Forsblom C, et al, FinnDiane Study Group. The association between dietary sodium intake, ESRD, and all‐cause mortality in patients with type 1 diabetes. Diabetes Care. 2011; 34 ( 4 ): 861 ‐ 866. https://doi.org/10.2337/dc10‐1722.
dc.identifier.citedreferenceEkinci EI, Clarke S, Thomas MC, et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care. 2011; 34 ( 3 ): 703 ‐ 709.
dc.identifier.citedreferenceO’Donnell M, Mente A, Rangarajan S, et al, for the PURE Investigators. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014; 371: 612 ‐ 623.
dc.identifier.citedreferenceYusuf S, Rangarajan S, Teo K, et al, PURE Investigators. Cardiovascular risk and events in 17 low‐, middle‐, and high‐income countries. N Engl J Med. 2014; 371 ( 9 ): 818 ‐ 827.
dc.identifier.citedreferenceCook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation. 2014; 129 ( 9 ): 981 ‐ 989.
dc.identifier.citedreferenceHan W, Sun N, Chen Y, Wang H, Xi Y, Ma Z. Validation of the Spot Urine in Evaluating 24‐Hour Sodium Excretion in Chinese Hypertension Patients. Am J Hypertens. 2015; 28 ( 11 ): 1368 ‐ 1375.
dc.identifier.citedreferenceMente A, O’Donnell M, Rangarajan S, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community‐level prospective epidemiological cohort study. The Lancet. 2018; 392 ( 10146 ): 496 ‐ 506.
dc.identifier.citedreferenceKawasaki T, Delea CS, Bartter FC, Smith H. The effect of high‐sodium and low‐sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med. 1978; 64 ( 2 ): 193 ‐ 198.
dc.identifier.citedreferenceGildea JJ, Lahiff DT, Van Sciver RE, et al. A linear relationship between the ex‐vivo sodium mediated expression of two sodium regulatory pathways as a surrogate marker of salt sensitivity of blood pressure in exfoliated human renal proximal tubule cells: the virtual renal biopsy. Clin Chim Acta. 2013; 421: 236 ‐ 242.
dc.identifier.citedreferenceGildea JJ, Carlson JM, Schoeffel CD, Carey RM, Felder RA. Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure. Clin Biochem. 2013; 46: 1131 ‐ 1134. https://doi.org/10.1016/j.clinbiochem.2013.05.052. published correction appears in Clin Biochem. 2013;47:501.
dc.identifier.citedreferenceLiu Y, Shi M, Dolan J, e J. Sodium sensitivity of blood pressure in Chinese populations. J Hum Hypertens. 2020; 34: 94 ‐ 107. http://fbga30fd8c346ef34d67903a5b6d8ea5d318supwbc5p5u9f06wwf.fgax.yc2.bjmu.edu.cn/10.1038/s41371‐018‐0152‐0.
dc.identifier.citedreferenceChoi HY, Park HC, Ha SK. Salt Sensitivity and Hypertension: a Paradigm Shift from Kidney Malfunction to Vascular Endothelial Dysfunction. Electrolyte Blood Press. 2015; 13 ( 1 ): 7 ‐ 16.
dc.identifier.citedreferenceRorije NMG, Engberink RHGO, Chahid Y, et al. Microvascular Permeability after an Acute and Chronic Salt Load in Healthy Subjects: a Randomized Open‐label Crossover Intervention Study. Anesthesiology. 2018; 128 ( 2 ): 352 ‐ 360. http://fbga30fd8c346ef34d67903a5b6d8ea5d318supwbc5p5u9f06wwf.fgax.yc2.bjmu.edu.cn/10.1097/ALN.0000000000001989.
dc.identifier.citedreferenceKurtz TW, DiCarlo SE, Pravenec M. The American Heart Association Scientific Statement on salt sensitivity of blood pressure: prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens. 2017; 35 ( 11 ): 2214 ‐ 2225.
dc.identifier.citedreferenceBihorac A, Tezcan H, Ozener C, Oktay A, Akoglu E. Association between salt sensitivity and target organ damage in essential hypertension. Am J Hypertens. 2000; 13 ( 8 ): 864 ‐ 872.
dc.identifier.citedreferenceBigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM. Microalbuminuria in salt‐sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension. 1994; 23 ( 2 ): 195 ‐ 199.
dc.identifier.citedreferenceWeinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001; 37 ( 2 Pt 2 ): 429 ‐ 432.
dc.identifier.citedreferenceMorimoto A, Uzu T, Fujii T, et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997 Dec 13; 350 ( 9093 ): 1734 ‐ 1737.
dc.identifier.citedreferenceElijovich F, Weinberger MH, Anderson CA, et al, American Heart Association Professional and Public Education Committee of the Council on Hypertension. Council on Functional Genomics and Translational Biology; and Stroke Council. Salt Sensitivity of Blood Pressure: a Scientific Statement From the American Heart Association. Hypertension. 2016; 68 ( 3 ): e7 ‐ e46. Epub 2016 Jul 21. Erratum in: Hypertension. 2016;68(4):e62.
dc.identifier.citedreferenceMcLean RM, Farmer VL, Nettleton A, Cameron CM, Cook NR, Campbell NRC, TRUE Consortium (International Consortium for Quality Research on Dietary Sodium/Salt). Assessment of dietary sodium intake using a food frequency questionnaire and 24‐ hour urinary sodium excretion: a systematic literature review. J Clin Hypertens (Greenwich). 2017; 19 ( 12 ): 1214 ‐ 1230.
dc.identifier.citedreferenceOrtega RM, Pérez‐Rodrigo C, López‐Sobaler AM. Dietary assessment methods: dietary records. Nutr Hosp. 2015; 31Suppl3: 38 ‐ 45. https://doi.org/10.3305/nh.2015.31.sup3.8749.
dc.identifier.citedreferenceFuller NR, Fong M, Gerofi J, et al. Comparison of an electronic versus traditional food diary for assessing dietary intake‐A validation study. Obes Res Clin Pract. 2017; 11 ( 6 ): 647 ‐ 654.
dc.identifier.citedreferenceCobb LK, Anderson CA, Elliott P, et al, American Heart Association Council on Lifestyle and Metabolic Health. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation. 2014; 129 ( 10 ): 1173 ‐ 1186.
dc.identifier.citedreferenceINTERSALT Study an international co‐operative study on the relation of blood pressure to electrolyte excretion in populations. I. Design and methods. The INTERSALT Co‐operative Research Group. J Hypertens. 1986; 4 ( 6 ): 781 ‐ 787. https://doi.org/10.1097/00004872‐198612000‐00014.
dc.identifier.citedreferenceIntersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988; 297 ( 6644 ): 319 ‐ 328. https://doi.org/10.1136/bmj.297.6644.319.
dc.identifier.citedreferenceStamler J. The INTERSALT Study: background, methods, findings, and implications. Am J Clin Nutr. 1997; 65(2Suppl): 626S ‐ 642S. published correction appears in Am J Clin Nutr 1997 Nov;66(5):1297.
dc.identifier.citedreferenceJi C, Miller MA, Venezia A, Strazzullo P, Cappuccio FP. Comparisons of spot vs 24‐h urine samples for estimating population salt intake: validation study in two independent samples of adults in Britain and Italy. Nutr Metab Cardiovasc Dis. 2014; 24 ( 2 ): 140 ‐ 147.
dc.identifier.citedreferenceAllen NB, Zhao L, Loria CM, et al. The Validity of Predictive Equations to Estimate 24‐Hour Sodium Excretion: the MESA and CARDIA Urinary Sodium Study. Am J Epidemiol. 2017; 186 ( 2 ): 149 ‐ 159.
dc.identifier.citedreferenceHe FJ, Campbell NRC, Ma Y, MacGregor GA, Cogswell ME, Cook NR. Errors in estimating usual sodium intake by the Kawasaki formula alter its relationship with mortality: implications for public health. Int J Epidemiol. 2018; 47 ( 6 ): 1784 ‐ 1795.
dc.identifier.citedreferenceLerchl K, Rakova N, Dahlmann A, et al. Agreement between 24‐hour salt ingestion and sodium excretion in a controlled environment. Hypertension. 2015; 66 ( 4 ): 850 ‐ 857.
dc.identifier.citedreferenceMarques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018; 15 ( 1 ): 20 ‐ 32.
dc.identifier.citedreferenceHao Y, Wang Y, Xi L, et al. A Nested Case‐Control Study of Association between Metabolome and Hypertension Risk. Biomed Res Int. 2016; 2016: 7646979.
dc.identifier.citedreferenceDaugirdas JT, Nawab ZM. Acetate relaxation of isolated vascular smooth muscle. Kidney Int. 1987; 32 ( 1 ): 39 ‐ 46. https://doi.org/10.1038/ki.1987.169.
dc.identifier.citedreferenceKrishnan S, Rajendran VM, Binder HJ. Apical NHE isoforms differentially regulate butyrate‐stimulated Na absorption in rat distal colon. Am J Physiol Cell Physiol. 2003; 285 ( 5 ): C1246 ‐ 54.
dc.identifier.citedreferenceRossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol. 2002; 64: 877 ‐ 897.
dc.identifier.citedreferenceRobinson JW, Rausis C, Basset P, Mirkovitch V. Functional and morphological response of the dog colon to ischaemia. Gut. 1972; 13 ( 10 ): 775 ‐ 783.
dc.identifier.citedreferenceRobinson JW, Haroud M, Winistörfer B, Mirkovitch V. Recovery of function and structure of dog ileum and colon following two hours’ acute ischaemia. Eur J Clin Invest. 1974; 4 ( 6 ): 443 ‐ 452.
dc.identifier.citedreferenceIordache C, Duszyk M. Sodium 4‐phenylbutyrate upregulates ENaC and sodium absorption in T84 cells. Exp Cell Res. 2007; 313 ( 2 ): 305 ‐ 311.
dc.identifier.citedreferenceRoediger WE, Moore A. Effect of short‐chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig Dis Sci. 1981; 26 ( 2 ): 100 ‐ 106.
dc.identifier.citedreferenceTurnamian SG, Binder HJ. Regulation of active sodium and potassium transport in the distal colon of the rat. Role of the aldosterone and glucocorticoid receptors. J Clin Invest. 1989; 84 ( 6 ): 1924 ‐ 1929.
dc.identifier.citedreferenceRichards EM, Pepine CJ, Raizada MK, Kim S. The Gut, Its Microbiome, and Hypertension. Curr Hypertens Rep. 2017; 19 ( 4 ): 36.
dc.identifier.citedreferenceOlde Engberink RHG, Selvarajah V, Vogt L. Clinical impact of tissue sodium storage. Pediatr Nephrol. 2019. published online ahead of print, 2019 Jul 30.
dc.identifier.citedreferenceTitze J, Shakibaei M, Schafflhuber M, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004; 287 ( 1 ): H203 ‐ 8. Epub 2004 Feb 19. Erratum in: Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1433.
dc.identifier.citedreferenceKopp C, Linz P, Dahlmann A, et al. Titze J. 23Na magnetic resonance imaging‐determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013; 61 ( 3 ): 635 ‐ 640.
dc.identifier.citedreferenceTitze J, Bauer K, Schafflhuber M, et al. Internal sodium balance in DOCA‐salt rats: a body composition study. Am J Physiol Renal Physiol. 2005; 289 ( 4 ): F793 ‐ 802. Epub 2005 May 24. Erratum in: Am J Physiol Renal Physiol. 2006;290(2):F561‐2.
dc.identifier.citedreferenceDahlmann A, Dörfelt K, Eicher F, et al. Magnetic resonance‐determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015; 87 ( 2 ): 434 ‐ 441.
dc.identifier.citedreferenceKopp C, Linz P, Wachsmuth L, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012; 59 ( 1 ): 167 ‐ 172.
dc.identifier.citedreferenceWang P, Deger MS, Kang H, Ikizler TA, Titze J, Gore JC. Sex differences in sodium deposition in human muscle and skin. Magn Reson Imaging. 2017; 36: 93 ‐ 97.
dc.identifier.citedreferenceSelvarajah V, Mäki‐Petäjä KM, Pedro L, et al. Novel Mechanism for Buffering Dietary Salt in Humans: effects of Salt Loading on Skin Sodium, Vascular Endothelial Growth Factor C, and Blood Pressure. Version 2. Hypertension. 2017; 70 ( 5 ): 930 ‐ 937. https://doi.org/10.1161/HYPERTENSIONAHA.117.10003.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.