Show simple item record

Reconciling Observed and Predicted Tropical Rainforest OH Concentrations

dc.contributor.authorJeong, Daun
dc.contributor.authorSeco, Roger
dc.contributor.authorEmmons, Louisa
dc.contributor.authorSchwantes, Rebecca
dc.contributor.authorLiu, Yingjun
dc.contributor.authorMcKinney, Karena A.
dc.contributor.authorMartin, Scot T.
dc.contributor.authorKeutsch, Frank N.
dc.contributor.authorGu, Dasa
dc.contributor.authorGuenther, Alex B.
dc.contributor.authorVega, Oscar
dc.contributor.authorTota, Julio
dc.contributor.authorSouza, Rodrigo A. F.
dc.contributor.authorSpringston, Stephen R.
dc.contributor.authorWatson, Thomas B.
dc.contributor.authorKim, Saewung
dc.date.accessioned2022-01-06T15:52:45Z
dc.date.available2023-02-06 10:52:43en
dc.date.available2022-01-06T15:52:45Z
dc.date.issued2022-01-16
dc.identifier.citationJeong, Daun; Seco, Roger; Emmons, Louisa; Schwantes, Rebecca; Liu, Yingjun; McKinney, Karena A.; Martin, Scot T.; Keutsch, Frank N.; Gu, Dasa; Guenther, Alex B.; Vega, Oscar; Tota, Julio; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; Kim, Saewung (2022). "Reconciling Observed and Predicted Tropical Rainforest OH Concentrations." Journal of Geophysical Research: Atmospheres 127(1): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/171256
dc.description.abstractWe present OH observations made in Amazonas, Brazil during the Green Ocean Amazon campaign (GoAmazon2014/5) from February to March of 2014. The average diurnal variation of OH peaked with a midday (10:00–15:00) average of 1.0 × 106 (±0.6 × 106) molecules cm−3. This was substantially lower than previously reported in other tropical forest photochemical environments (2–5 × 106 molecules cm−3) while the simulated OH reactivity was lower. The observational data set was used to constrain a box model to examine how well current photochemical reaction mechanisms can simulate observed OH. We used one near‐explicit mechanism (MCM v3.3.1) and four condensed mechanisms (i.e., RACM2, MOZART‐T1, CB05, CB6r2) to simulate OH. A total of 14 days of analysis shows that all five chemical mechanisms were able to explain the measured OH within instrumental uncertainty of 40% during the campaign in the Amazonian rainforest environment. Future studies are required using more reliable NOx and VOC measurements to further investigate discrepancies in our understanding of the radical chemistry in the tropical rainforest.Key PointsOH observations with a chemical ionization mass spectrometer during the GoAmazon2014/5 study were lower than some previous studiesBox model simulations of OH were carried out with five different chemical mechanismsObserved and model‐predicted OH concentrations agree to within measurement uncertainty of 40%
dc.publisherUniverstiy of California
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotochemistry
dc.subject.otherhydroxyl radical
dc.subject.otherisoprene
dc.subject.otherF0AM
dc.titleReconciling Observed and Predicted Tropical Rainforest OH Concentrations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171256/1/jgrd57519_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171256/2/2020JD032901-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171256/3/jgrd57519.pdf
dc.identifier.doi10.1029/2020JD032901
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRen, X., Olson, J. R., Crawford, J. H., Brune, W. H., Mao, J., Long, R. B., et al. ( 2008 ). HOx chemistry during INTEX‐A 2004: Observation, model calculation, and comparison with previous studies. Journal of Geophysical Research: Atmospheres, 113 ( 5 ), 1 – 13. https://doi.org/10.1029/2007JD009166
dc.identifier.citedreferenceNovelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T., et al. ( 2014 ). Characterisation of an inlet pre‐injector laser‐induced fluorescence instrument for the measurement of atmospheric hydroxyl radicals. Atmospheric Measurement Techniques, 7 ( 10 ), 3413 – 3430. https://doi.org/10.5194/amt-7-3413-2014
dc.identifier.citedreferenceNovelli, A., Kaminski, M., Rolletter, M., Acir, I. H., Bohn, B., Dorn, H. P., et al. ( 2018 ). Evaluation of OH and HO2 concentrations and their budgets during photooxidation of 2‐methyl‐3‐butene‐2‐ol (MBO) in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 18 ( 15 ), 11409 – 11422. https://doi.org/10.5194/acp-18-11409-2018
dc.identifier.citedreferenceNovelli, A., Vereecken, L., Bohn, B., Dorn, H. P., Gkatzelis, G. I., Hofzumahaus, A., et al. ( 2020 ). Importance of isomerization reactions for OH radical regeneration from the photo‐oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 20 ( 6 ), 3333 – 3355. https://doi.org/10.5194/acp-20-3333-2020
dc.identifier.citedreferencePeeters, J. ( 2015 ). Interactive comment on “The MCM v3.3. Degradation scheme for isoprene” by M. E. Jenkin et al., Atmospheric Chemistry and Physics Discussions, 15, C2486.
dc.identifier.citedreferencePeeters, J., & Müller, J. F. ( 2010 ). HOx radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: Experimental evidence and global impact. Physical Chemistry Chemical Physics, 12 ( 42 ), 14227. https://doi.org/10.1039/c0cp00811g
dc.identifier.citedreferencePeeters, J., Müller, J. F., Stavrakou, T., & Nguyen, V. S. ( 2014 ). Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: The upgraded LIM1 mechanism. Journal of Physical Chemistry A, 118 ( 38 ), 8625 – 8643. https://doi.org/10.1021/jp5033146
dc.identifier.citedreferencePugh, T. A. M., MacKenzie, A. R., Hewitt, C. N., Langford, B., Edwards, P. M., Furneaux, K. L., et al. ( 2010 ). Simulating atmospheric composition over a South‐East Asian tropical rainforest: Performance of a chemistry box model. Atmospheric Chemistry and Physics, 10, 279 – 298. https://doi.org/10.5194/acp-10-279-2010
dc.identifier.citedreferenceRaso, A. R. W., Custard, K. D., May, N. W., Tanner, D., Newburn, M. K., Walker, L., et al. ( 2017 ). Active molecular iodine photochemistry in the Arctic. Proceedings of the National Academy of Sciences, 114 ( 38 ), 10053 – 10058. https://doi.org/10.1073/pnas.1702803114
dc.identifier.citedreferenceRickly, P., & Stevens, P. S. ( 2018 ). Measurements of a potential interference with laser‐induced fluorescence measurements of ambient OH from the ozonolysis of biogenic alkenes. Atmospheric Measurement Techniques, 11 ( 1 ), 1 – 16. https://doi.org/10.5194/amt-11-1-2018
dc.identifier.citedreferenceRohrer, F., Lu, K., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C. C., et al. ( 2014 ). Maximum efficiency in the hydroxyl‐radical‐based self‐cleansing of the troposphere. Nature Geoscience, 7 ( 8 ), 559 – 563. https://doi.org/10.1038/ngeo2199
dc.identifier.citedreferenceRuiz, L. H., & Yarwood, G. ( 2013 ). Prepared for the Texas AQRP (Project 12‐012) University of Texas at Austin, and ENVIRON International Corporation; 2013. Interactions between organic aerosol and NOy: Influence on oxidant production.
dc.identifier.citedreferenceSanchez, D., Jeong, D., Seco, R., Wrangham, I., Park, J. H., Brune, W. H., et al. ( 2018 ). Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS). Atmospheric Environment, 174, 227 – 236. https://doi.org/10.1016/j.atmosenv.2017.10.056
dc.identifier.citedreferenceSaunders, S. M., Jenkin, M. E., Derwent, R. G., & Pilling, M. J. ( 1997 ). World Wide Web site of a master chemical mechanism (MCM) for use in tropospheric chemistry models. Atmospheric Environment, 31 ( 8 ), 1249. https://doi.org/10.1016/S1352-2310(97)85197-7
dc.identifier.citedreferenceSaunders, S. M., Jenkin, M. E., Derwent, R. G., & Pilling, M. J. ( 2003 ). Protocol for the development of the master chemical mechanism, MCM v3 (Part A): Tropospheric degradation of non‐aromatic volatile organic compounds. Atmospheric Chemistry and Physics, 3 ( 1 ), 161 – 180. https://doi.org/10.5194/acp-3-161-2003
dc.identifier.citedreferenceSjostedt, S. J., Huey, L. G., Tanner, D. J., Peischl, J., Chen, G., Dibb, J. E., et al. ( 2007 ). Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003. Atmospheric Environment, 41 ( 24 ), 5122 – 5137. https://doi.org/10.1016/j.atmosenv.2006.06.065
dc.identifier.citedreferenceStone, D., Evans, M. J., Commane, R., Ingham, T., Floquet, C. F. A., McQuaid, J. B., et al. ( 2010 ). HOx observations over west Africa during AMMA: Impact of isoprene and NOx. Atmospheric Chemistry and Physics, 10 ( 19 ), 9415 – 9429. https://doi.org/10.5194/acp-10-9415-2010
dc.identifier.citedreferenceTan, D., Faloona, I., Simpas, J. B., Brune, W., Shepson, P. B., Couch, T. L., et al. ( 2001 ). HOx budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign. Journal of Geophysical Research: Atmospheres, 106 ( D20 ), 24407 – 24427. https://doi.org/10.1029/2001JD900016
dc.identifier.citedreferenceTan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., et al. ( 2017 ). Radical chemistry at a rural site (Wangdu) in the North China Plain: Observation and model calculations of OH, HO2 and RO2 radicals. Atmospheric Chemistry and Physics, 17 ( 1 ), 663 – 690. https://doi.org/10.5194/acp-17-663-2017
dc.identifier.citedreferenceTanner, D. J., Jefferson, A., & Eisele, F. L. ( 1997 ). Selected ion chemical ionization mass spectrometric measurement of OH. Journal of Geophysical Research: Atmospheres, 102 ( D5 ), 6415 – 6425. Doi. https://doi.org/10.1029/96jd03919
dc.identifier.citedreferenceTaraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., & Lelieveld, J. ( 2009 ). Mainz Isoprene Mechanism 2 (MIM2): An isoprene oxidation mechanism for regional and global atmospheric modelling. Atmospheric Chemistry and Physics, 9 ( 8 ), 2751 – 2777. https://doi.org/10.5194/acp-9-2751-2009
dc.identifier.citedreferenceTeng, A. P., Crounse, J. D., & Wennberg, P. O. ( 2017 ). Isoprene peroxy radical Dynamics. Journal of the American Chemical Society, 139 ( 15 ), 5367 – 5377. https://doi.org/10.1021/jacs.6b12838
dc.identifier.citedreferenceThornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H., Brune, W. H., et al. ( 2002 ). Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. Journal of Geophysical Research, 107 ( D12 ), 4146. https://doi.org/10.1029/2001JD000932
dc.identifier.citedreferenceWennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., et al. ( 2018 ). Gas‐phase reactions of isoprene and its major oxidation products. Chemical Reviews, 118 ( 7 ), 3337 – 3390. https://doi.org/10.1021/acs.chemrev.7b00439
dc.identifier.citedreferenceWhalley, L. K., Edwards, P. M., Furneaux, K. L., Goddard, A., Ingham, T., Evans, M. J., et al. ( 2011 ). Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest. Atmospheric Chemistry and Physics, 11 ( 14 ), 7223 – 7233. https://doi.org/10.5194/acp-11-7223-2011
dc.identifier.citedreferenceWolfe, G. M., Cantrell, C., Kim, S., Mauldin, R. L., Karl, T., Harley, P., et al. ( 2014 ). Missing peroxy radical sources within a summertime ponderosa pine forest. Atmospheric Chemistry and Physics, 14 ( 9 ), 4715 – 4732. https://doi.org/10.5194/acp-14-4715-2014
dc.identifier.citedreferenceWolfe, G. M., Crounse, J. D., Parrish, J. D., St Clair, J. M., Beaver, M. R., Paulot, F., et al. ( 2012 ). Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene‐derived hydroperoxyenals (HPALDs). Physical Chemistry Chemical Physics, 14 ( 20 ), 7276 – 7286. https://doi.org/10.1039/c2cp40388a
dc.identifier.citedreferenceWolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., De Gouw, J. A., Gilman, J. B., et al. ( 2016 ). Formaldehyde production from isoprene oxidation across NOx regimes. Atmospheric Chemistry and Physics, 16 ( 4 ), 2597 – 2610. https://doi.org/10.5194/acp-16-2597-2016
dc.identifier.citedreferenceWolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., & Liao, J. ( 2016 ). The framework for 0‐D atmospheric modeling (F0AM) v3.1. Geoscientific Model Development, 9 ( 9 ), 3309 – 3319. https://doi.org/10.5194/gmd-9-3309-2016
dc.identifier.citedreferenceYarwood, G., Whitten, G., & Rao, S. ( 2005 ). Updates to the Carbon Bond 4 photochemical mechanism prepared for Lake Michigan air directors consortium.
dc.identifier.citedreferenceZimmerman, P. R., Greenberg, J. P., & Westberg, C. E. ( 1988 ). Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary layer. Journal of Geophysical Research: Atmospheres, 93 ( D2 ), 1407 – 1416. https://doi.org/10.1029/JD093iD02p01407
dc.identifier.citedreferenceChen, Q., Fan, J., Hagos, S., Gustafson, W. I., & Berg, L. K. ( 2015 ). Roles of wind shear at different vertical levels: Cloud system organization and properties. Journal of Geophysical Research: Atmospheres, 120 ( 13 ), 6551 – 6574. https://doi.org/10.1002/2015JD023253
dc.identifier.citedreferenceFlynn, C. J. ( 2016 ). Shortwave Array Spectroradiometer–Hemispheric (SASHe) instrument Handbook. https://doi.org/10.2172/1251414
dc.identifier.citedreferenceGraus, M., Muller, M., & Hansel, A. ( 2010 ). High resolution PTR‐TOF: Quantification and Formula Confirmation of VOC in real time. Journal of the American Society for Mass Spectrometry, 21 ( 6 ), 1037 – 1044. https://doi.org/10.1016/j.jasms.2010.02.006
dc.identifier.citedreferenceGreenberg, J. P., & Zimmerman, P. R. ( 1984 ). Nonmethane hydrocarbons in remote tropical, continental, and marine atmospheres. Journal of Geophysical Research, 89 ( D3 ), 4767 – 4778. https://doi.org/10.1029/JD089iD03p04767
dc.identifier.citedreferenceJordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., et al. ( 2009 ). A high resolution and high sensitivity proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐TOF‐MS). International Journal of Mass Spectrometry, 286 ( 2–3 ), 122 – 128. https://doi.org/10.1016/j.ijms.2009.07.005
dc.identifier.citedreferenceAlaghmand, M., Shepson, P. B., Starn, T. K., Jobson, B. T., Wallace, H. W., Carroll, M. A., et al. ( 2011 ). The Morning NOx maximum in the forest atmosphere boundary layer. Atmospheric Chemistry and Physics Discussions, 11 ( 10 ), 29251 – 29282. https://doi.org/10.5194/acpd-11-29251-2011
dc.identifier.citedreferenceArchibald, A. T., Cooke, M. C., Utembe, S. R., Shallcross, D. E., Derwent, R. G., & Jenkin, M. E. ( 2010 ). Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmospheric Chemistry and Physics, 10 ( 17 ), 8097 – 8118. https://doi.org/10.5194/acp-10-8097-2010
dc.identifier.citedreferenceAsatryan, R., Da Silva, G., & Bozzelli, J. W. ( 2010 ). Quantum chemical study of the acrolein (CH2CHCHO) + OH + O2 reactions. Journal of Physical Chemistry A, 114 ( 32 ), 8302 – 8311. research‐article. https://doi.org/10.1021/jp104828a
dc.identifier.citedreferenceBakwin, P. S., Wofsy, S. C., & Fan, S. ( 1990 ). Measurements of reactive nitrogen oxides (NOy) within and above a tropical forest canopy in the wet season. Journal of Geophysical Research, 95 ( D10 ), 16765 – 16772. https://doi.org/10.1029/jd095id10p16765
dc.identifier.citedreferenceBates, K. H., & Jacob, D. J. ( 2019 ). A new model mechanism for atmospheric oxidation of isoprene: Global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmospheric Chemistry and Physics, 19 ( 14 ), 9613 – 9640. https://doi.org/10.5194/acp-19-9613-2019
dc.identifier.citedreferenceBerndt, T., Hyttinen, N., Herrmann, H., & Hansel, A. ( 2019 ). First oxidation products from the reaction of hydroxyl radicals with isoprene for pristine environmental conditions. Communications Chemistry, 2 ( 1 ). 1 – 10. https://doi.org/10.1038/s42004-019-0120-9
dc.identifier.citedreferenceButler, T. M., Taraborrelli, D., Brühl, C., Fischer, H., Harder, H., Martinez, M., et al. ( 2008 ). Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry‐climate model: Lessons from the GABRIEL airborne field campaign. Atmospheric Chemistry and Physics, 8, 4529 – 4546. https://doi.org/10.5194/acp-8-4529-2008
dc.identifier.citedreferenceCarslaw, N., Creasey, D. J., Harrison, D., Heard, D. E., Hunter, M. C., Jacobs, P. J., et al. ( 2001 ). OH and HO 2 radical chemistry in a forested region of north‐western Greece. Atmospheric Environment, 35 ( 27 ), 4725 – 4737. https://doi.org/10.1016/S1352-2310(01)00089-9
dc.identifier.citedreferenceChen, S., Ren, X., Mao, J., Chen, Z., Brune, W. H., Lefer, B., et al. ( 2010 ). A comparison of chemical mechanisms based on TRAMP‐2006 field data. Atmospheric Environment, 44 ( 33 ), 4116 – 4125. https://doi.org/10.1016/j.atmosenv.2009.05.027
dc.identifier.citedreferenceCrounse, J. D., Knap, H. C., Ørnsø, K., Jørgensen, S., Paulot, F., Kjaergaard, H. G., & Wennberg, P. O. ( 2012 ). Atmospheric fate of methacrolein. 1. Peroxy radical isomerization following addition of oh and O 2. Journal of Physical Chemistry A, 116 ( 24 ), 5756 – 5762. https://doi.org/10.1021/jp211560u
dc.identifier.citedreferenceCrounse, J. D., Paulot, F., Kjaergaard, H. G., & Wennberg, P. O. ( 2011 ). Peroxy radical isomerization in the oxidation of isoprene. Physical Chemistry Chemical Physics, 13 ( 30 ), 13607. https://doi.org/10.1039/c1cp21330j
dc.identifier.citedreferenceCrounse, J. D., Teng, A., and Wennberg, P. O. ( 2014 ). Experimental constrains on the distribution and fate of peroxy radicals formed in the reactions of isoprene + OH + O 2 presented at the Atmospheric Chemical Mechanisms: Simple Models – Real world Complexities, Universtiy of California,.
dc.identifier.citedreferenceDodge, M. C. ( 2000 ). Chemical oxidant mechanisms for air quality modeling: Critical review. Atmospheric Environment, 34 ( 12–14 ), 2103 – 2130. https://doi.org/10.1016/S1352-2310(99)00461-6
dc.identifier.citedreferenceFeiner, P. A., Brune, W. H., Miller, D. O., Zhang, L., Cohen, R. C., Romer, P. S., et al. ( 2016 ). Testing atmospheric oxidation in an Alabama forest. Journal of the Atmospheric Sciences, 73 ( 12 ), 4699 – 4710. https://doi.org/10.1175/JAS-D-16-0044.1
dc.identifier.citedreferenceFuchs, H., Hofzumahaus, A., Rohrer, F., Bohn, B., Brauers, T., Dorn, H.‐P., et al. ( 2013 ). Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nature Geoscience, 6 ( 12 ), 1023 – 1026. https://doi.org/10.1038/ngeo1964
dc.identifier.citedreferenceFuchs, H., Tan, Z., Hofzumahaus, A., Broch, S., Dorn, H. P., Holland, F., et al. ( 2016 ). Investigation of potential interferences in the detection of atmospheric ROx radicals by laser‐induced fluorescence under dark conditions. Atmospheric Measurement Techniques, 9 ( 4 ), 1431 – 1447. https://doi.org/10.5194/amt-9-1431-2016
dc.identifier.citedreferenceGoliff, W. S., Stockwell, W. R., & Lawson, C. V. ( 2013 ). The regional atmospheric chemistry mechanism, version 2. Atmospheric Environment, 68, 174 – 185. https://doi.org/10.1016/j.atmosenv.2012.11.038
dc.identifier.citedreferenceGriffith, S. M., Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S. B., et al. ( 2013 ). OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 ‐ Part 1: Measurements and model comparison. Atmospheric Chemistry and Physics, 13 ( 11 ), 5403 – 5423. https://doi.org/10.5194/acp-13-5403-2013
dc.identifier.citedreferenceGross, A., & Stockwell, W. R. ( 2003 ). Comparison of the EMEP, RADM2 and RACM mechanisms. Journal of Atmospheric Chemistry, 44 ( 2 ), 151 – 170. https://doi.org/10.1023/A:1022483412112
dc.identifier.citedreferencePeeters, J., Nguyen, T. L., & Vereecken, L. ( 2009 ). HOx radical regeneration in the oxidation of isoprene. Physical Chemistry Chemical Physics, 11 ( 28 ), 5935. https://doi.org/10.1039/b908511d
dc.identifier.citedreferenceHens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., et al. ( 2014 ). Observation and modelling of HOx radicals in a boreal forest. Atmospheric Chemistry and Physics, 14 ( 16 ), 8723 – 8747. https://doi.org/10.5194/acp-14-8723-2014
dc.identifier.citedreferenceHofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C., et al. ( 2009 ). Amplified trace gas removal in the troposphere. Science, 324, 1702 – 1704. https://doi.org/10.1126/science.1164566
dc.identifier.citedreferenceHolland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., & Pätz, H. W. ( 2003 ). Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ. Journal of Geophysical Research: Atmospheres, 108 ( 4 ). https://doi.org/10.1029/2001jd001393
dc.identifier.citedreferenceHuey, L. G. ( 2007 ). Measurement of trace atmospheric species by chemical ionization mass spectrometry: Speciation of reactive nitrogen and future directions. Mass Spectrometry Reviews, 26, 166, 184. https://doi.org/10.1002/mas.20118
dc.identifier.citedreferenceJacob, J., & Wofsy, S. C. ( 1988 ). Photochemistry of biogenic emissions over the Amazon forest. Journal of Geophysical Research, 93 ( D2 ), 1477 – 1486. https://doi.org/10.1029/jd093id02p01477
dc.identifier.citedreferenceJenkin, M. E., Hurley, M. D., & Wallington, T. J. ( 2007 ). Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Physical Chemistry Chemical Physics, 9 ( 24 ), 3149 – 3162. https://doi.org/10.1039/b702757e
dc.identifier.citedreferenceJenkin, M. E., Hurley, M. D., & Wallington, T. J. ( 2010 ). Investigation of the radical product channel of the CH3OCH 2O2 + HO2 reaction in the gas phase. Journal of Physical Chemistry A, 114 ( 1 ), 408 – 416. https://doi.org/10.1021/jp908158w
dc.identifier.citedreferenceJenkin, M. E., Young, J. C., & Rickard, A. R. ( 2015 ). The MCM v3.3.1 degradation scheme for isoprene. Atmospheric Chemistry and Physics, 15 ( 20 ), 11433 – 11459. https://doi.org/10.5194/acp-15-11433-2015
dc.identifier.citedreferenceJeong, D., Seco, R., Gu, D., Lee, Y., Nault, B. A., Knote, C. J., et al. ( 2019 ). Integration of airborne and ground observations of Nitryl Chloride in the Seoul Metropolitan area and the Implications on regional oxidation capacity during KORUS‐AQ 2016. Atmospheric Chemistry and Physics, 19, 12779 – 12795. https://doi.org/10.5194/acp-19-12779-2019
dc.identifier.citedreferenceJimenez, P., Baldasano, J. M., & Dabdub, D. ( 2003 ). Comparison of photochemical mechanisms for air quality modeling. Atmospheric Environment, 37 ( 30 ), 4179 – 4194. https://doi.org/10.1016/S1352-2310(03)00567-3
dc.identifier.citedreferenceKaiser, J., Skog, K. M., Baumann, K., Bertman, S. B., Brown, S. B., Brune, W. H., et al. ( 2016 ). Speciation of OH reactivity above the canopy of an isoprene‐dominated forest. Atmospheric Chemistry and Physics, 16 ( 14 ), 9349 – 9359. https://doi.org/10.5194/acp-16-9349-2016
dc.identifier.citedreferenceKim, S., Guenther, A., Lefer, B., Flynn, J., Griffin, R., Rutter, A. P., et al. ( 2015 ). Potential role of stabilized criegee radicals in sulfuric acid production in a high biogenic VOC environment. Environmental Science and Technology, 49 ( 6 ), 3383 – 3391. https://doi.org/10.1021/es505793t
dc.identifier.citedreferenceKim, S., Kim, S. Y., Lee, M., Shim, H., Wolfe, G. M., Guenther, A. B., et al. ( 2015 ). Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest. Atmospheric Chemistry and Physics, 15 ( 8 ), 4357 – 4371. https://doi.org/10.5194/acp-15-4357-2015
dc.identifier.citedreferenceKim, S., Sanchez, D., Wang, M., Seco, R., Jeong, D., Hughes, S., et al. ( 2016 ). OH reactivity in urban and suburban regions in Seoul, South Korea‐an East Asian megacity in a rapid transition. Faraday Discussions, 189, 231 – 251. https://doi.org/10.1039/c5fd00230c
dc.identifier.citedreferenceKnote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., et al. ( 2014 ). Simulation of semi‐explicit mechanisms of SOA formation from glyoxal in aerosol in a 3‐D model. Atmospheric Chemistry and Physics, 14 ( 12 ), 6213 – 6239. https://doi.org/10.5194/acp-14-6213-2014
dc.identifier.citedreferenceKnote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S., et al. ( 2015 ). Influence of the choice of gas‐phase mechanism on predictions of key gaseous pollutants during the AQMEII phase‐2 intercomparison. Atmospheric Environment, 115, 553 – 568. https://doi.org/10.1016/j.atmosenv.2014.11.066
dc.identifier.citedreferenceKubistin, D., Harder, H., Martinez, M., Rudolf, M., Sander, R., Bozem, H., et al. ( 2010 ). Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: Comparison of measurements with the box model MECCA. Atmospheric Chemistry and Physics, 10 ( 19 ), 9705 – 9728. https://doi.org/10.5194/acp-10-9705-2010
dc.identifier.citedreferenceKuhn, M., Builtjes, P. J. H., Poppe, D., Simpson, D., Stockwell, W. R., Andersson‐Sköld, Y., et al. ( 1998 ). Intercomparison of the gas‐phase chemistry in several chemistry and transport models. Atmospheric Environment, 32 ( 4 ), 693 – 709. https://doi.org/10.1016/S1352-2310(97)00329-4
dc.identifier.citedreferenceKürten, A., Rondo, L., Ehrhart, S., & Curtius, J. ( 2011 ). Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 4 ( 3 ), 437 – 443. https://doi.org/10.5194/amt-4-437-2011
dc.identifier.citedreferenceLelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., et al. ( 2008 ). Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452 ( 7188 ), 737 – 740. https://doi.org/10.1038/nature06870
dc.identifier.citedreferenceLevy, H. ( 1971 ). Normal atmosphere: Large radical and Formaldehyde concentrations predicted. Science, 173 ( 3992 ), 141 – 143. https://doi.org/10.1126/science.173.3992.141
dc.identifier.citedreferenceLiao, J., Huey, L. G., Liu, Z., Tanner, D. J., Cantrell, C. A., Orlando, J. J., et al. ( 2014 ). High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 7 ( 2 ), 91 – 94. https://doi.org/10.1038/ngeo2046
dc.identifier.citedreferenceLiao, J., Huey, L. G., Tanner, D. J., Brough, N., Brooks, S., Dibb, J. E., et al. ( 2011 ). Observations of hydroxyl and peroxy radicals and the impact of BrO at Summit, Greenland in 2007 and 2008. Atmospheric Chemistry and Physics, 11 ( 16 ), 8577 – 8591. https://doi.org/10.5194/acp-11-8577-2011
dc.identifier.citedreferenceLiao, J., Huey, L. G., Tanner, D. J., Flocke, F. M., Orlando, J. J., Neuman, J. A., et al. ( 2012 ). Observations of inorganic bromine (HOBr, BrO, and Br2) speciation at Barrow, Alaska, in spring 2009. Journal of Geophysical Research: Atmospheres, 117 ( 6 ), 1 – 11. https://doi.org/10.1029/2011JD016641
dc.identifier.citedreferenceLiu, Y., Brito, J., Dorris, M. R., Rivera‐Rios, J. C., Seco, R., Bates, K. H., et al. ( 2016 ). Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences, 113 ( 22 ), 6125 – 6130. https://doi.org/10.1073/pnas.1524136113
dc.identifier.citedreferenceLiu, Y., Seco, R., Kim, S., Guenther, A. B., Goldstein, A. H., Keutsch, F. N., et al. ( 2018 ). Isoprene photo‐oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia. Science Advances, 4 ( 4 ), 1 – 9. https://doi.org/10.1126/sciadv.aar2547
dc.identifier.citedreferenceLogan, J. A., Prather, M. J., Wofsy, S. C., & Mc Elroy, M. B. ( 1981 ). Tropospheric chemistry: A global perspective. Journal of Geophysical Research. 86 ( C8 ), 7210 ‐ 7254. https://doi.org/10.1029/JC086iC08p07210
dc.identifier.citedreferenceMadronich, S., & Flocke, S. ( 1998 ). Handbook of environmental chemistry. In Handbook of environmental chemistry ( P. Boule, pp. 1 – 26 ). Springer_Verlag.
dc.identifier.citedreferenceMao, J., Ren, X., Zhang, L., Van Duin, D. M., Cohen, R. C., Park, J. H., et al. ( 2012 ). Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmospheric Chemistry and Physics, 12 ( 17 ), 8009 – 8020. https://doi.org/10.5194/acp-12-8009-2012
dc.identifier.citedreferenceMartin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F., Schumacher, C., et al. ( 2017 ). The Green Ocean Amazon experiment (GoAmazon2014/5) Observes pollution affecting gases, aerosols, Clouds, and Rainfall over the rain forest. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-15-00221.1
dc.identifier.citedreferenceMartin, S. T., Artaxo, P., MacHado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., et al. ( 2016 ). Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 16 ( 8 ), 4785 – 4797. https://doi.org/10.5194/acp-16-4785-2016
dc.identifier.citedreferenceMauldin, R. L., Frost, G. J., Chen, G., Tanner, D. J., Prevot, A. S. H., Davis, D. D., & Eisele, F. L. ( 1998 ). OH measurements during the first aerosol characterization experiment (ACE 1): Observations and model comparisons. Journal of Geophysical Research: Atmospheres, 103 ( D13 ), 16713 – 16729. https://doi.org/10.1029/98JD00882
dc.identifier.citedreferenceMauldin, R. L., Kosciuch, E., Henry, B., Eisele, F. L., Shetter, R., Lefer, B., et al. ( 2010 ). Measurements of OH, HO2+RO2, H2SO4, and MSA at the South Pole during ISCAT 2000. Advances in Horticultural Science, 24 ( 1 ), 43 – 52. https://doi.org/10.1016/j.atmosenv.2004.06.031
dc.identifier.citedreferenceNolscher, A. C., Yanez‐Serrano, A. M., Wolff, S., Carioca de Araujo, A., Lavric, J. V., Kesselmeier, J., Williams, J. ( 2016 ). Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity. Nature Communications, 7 1 ‐ 12 ( 1038 ). https://doi.org/10.1038/ncomms10383
dc.identifier.citedreferenceNovelli, A., Hens, K., Ernest, C. T., Martinez, M., Nölscher, A. C., Sinha, V., et al. ( 2017 ). Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE‐LIF instrument. Atmospheric Chemistry and Physics, 17 ( 12 ), 7807 – 7826. https://doi.org/10.5194/acp-17-7807-2017
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.