Show simple item record

Biodiversity promotes ecosystem functioning despite environmental change

dc.contributor.authorHong, Pubin
dc.contributor.authorSchmid, Bernhard
dc.contributor.authorDe Laender, Frederik
dc.contributor.authorEisenhauer, Nico
dc.contributor.authorZhang, Xingwen
dc.contributor.authorChen, Haozhen
dc.contributor.authorCraven, Dylan
dc.contributor.authorDe Boeck, Hans J.
dc.contributor.authorHautier, Yann
dc.contributor.authorPetchey, Owen L.
dc.contributor.authorReich, Peter B.
dc.contributor.authorSteudel, Bastian
dc.contributor.authorStriebel, Maren
dc.contributor.authorThakur, Madhav P.
dc.contributor.authorWang, Shaopeng
dc.date.accessioned2022-02-07T20:21:40Z
dc.date.available2023-03-07 15:21:39en
dc.date.available2022-02-07T20:21:40Z
dc.date.issued2022-02
dc.identifier.citationHong, Pubin; Schmid, Bernhard; De Laender, Frederik; Eisenhauer, Nico; Zhang, Xingwen; Chen, Haozhen; Craven, Dylan; De Boeck, Hans J.; Hautier, Yann; Petchey, Owen L.; Reich, Peter B.; Steudel, Bastian; Striebel, Maren; Thakur, Madhav P.; Wang, Shaopeng (2022). "Biodiversity promotes ecosystem functioning despite environmental change." Ecology Letters (2): 555-569.
dc.identifier.issn1461-023X
dc.identifier.issn1461-0248
dc.identifier.urihttps://hdl.handle.net/2027.42/171507
dc.description.abstractThree decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta‐analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.e. warming, drought, nutrient addition or CO2 enrichment) modulated the effect of biodiversity on multiple ecosystem functions across three taxonomic groups (microbes, phytoplankton and plants). We found that biodiversity increased ecosystem functioning in both ambient and manipulated environments, but often not to the same degree. In particular, biodiversity effects on ecosystem functioning were larger in stressful environments induced by global change drivers, indicating that high‐diversity communities were more resistant to environmental change. Using a subset of studies, we also found that the positive effects of biodiversity were mainly driven by interspecific complementarity and that these effects increased over time in both ambient and manipulated environments. Our findings support biodiversity conservation as a key strategy for sustainable ecosystem management in the face of global environmental change.We performed a meta‐analysis and found that biodiversity promoted ecosystem functioning in changing environments. Furthermore, positive biodiversity effects on ecosystem functioning strengthened in stressful environments but weakened in favorable environments. Biodiversity thus has the potential to provide an important biological buffer against the negative effects of global change drivers to maintain ecosystem functioning in changing environments.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othermeta‐analysis
dc.subject.otherstress gradient hypothesis
dc.subject.otherbiodiversity
dc.subject.otherecosystem function
dc.subject.otherenvironmental change
dc.titleBiodiversity promotes ecosystem functioning despite environmental change
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171507/1/ele13936_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171507/2/ele13936.pdf
dc.identifier.doi10.1111/ele.13936
dc.identifier.sourceEcology Letters
dc.identifier.citedreferenceRatcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer‐Lorenzen, M., Verheyen, K. et al. ( 2017 ) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414 – 1426.
dc.identifier.citedreferenceOlsen, S.L., Töpper, J.P., Skarpaas, O., Vandvik, V. & Klanderud, K. ( 2016 ) From facilitation to competition: temperature‐driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Global Change Biology, 22, 1915 – 1926.
dc.identifier.citedreferenceParain, E.C., Rohr, R.P., Gray, S.M. & Bersier, L.‐F. ( 2019 ) Increased temperature disrupts the biodiversity‐ecosystem functioning relationship. American Naturalist, 193, 227 – 239.
dc.identifier.citedreferencePennekamp, F., Pontarp, M., Tabi, A., Altermatt, F., Alther, R., Choffat, Y. et al. ( 2018 ) Biodiversity increases and decreases ecosystem stability. Nature, 563, 109 – 112.
dc.identifier.citedreferencePiccardi, P., Vessman, B. & Mitri, S. ( 2019 ) Toxicity drives facilitation between 4 bacterial species. Proceedings of the National Academy of Sciences, 116, 15979 – 15984.
dc.identifier.citedreferencePires, A.P.F., Srivastava, D.S. & Farjalla, V.F. ( 2018 ) Is Biodiversity able to buffer ecosystems from climate change? What we know and what we don’t. BioScience, 68, 273 – 280.
dc.identifier.citedreferenceReich, P.B., Hobbie, S.E., Lee, T.D., Rich, R., Pastore, M.A. & Worm, K. ( 2020 ) Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nature Geoscience, 13, 787 – 793.
dc.identifier.citedreferenceReich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M. et al. ( 2001 ) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410, 809 – 810.
dc.identifier.citedreferenceReich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F.B. et al. ( 2012 ) Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589 – 592.
dc.identifier.citedreferenceRillig, M.C., Ryo, M., Lehmann, A., Aguilar‐Trigueros, C.A., Buchert, S., Wulf, A. et al. ( 2019 ) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886 – 890.
dc.identifier.citedreferenceSong, J., Wan, S., Piao, S., Knapp, A.K., Classen, A.T., Vicca, S. et al. ( 2019 ) A meta‐analysis of 1,119 manipulative experiments on terrestrial carbon‐cycling responses to global change. Nature Ecology and Evolution, 3, 1309 – 1320.
dc.identifier.citedreferenceSpaak, J.W., Baert, J.M., Baird, D.J., Eisenhauer, N., Maltby, L., Pomati, F. et al. ( 2017 ) Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecology Letters, 20, 1315 – 1324.
dc.identifier.citedreferenceSteudel, B., Hallmann, C., Lorenz, M., Abrahamczyk, S., Prinz, K., Herrfurth, C. et al. ( 2016 ) Contrasting biodiversity–ecosystem functioning relationships in phylogenetic and functional diversity. New Phytologist, 212, 409 – 420.
dc.identifier.citedreferenceSteudel, B., Hautier, Y., Hector, A. & Kessler, M. ( 2011 ) Diverse marsh plant communities are more consistently productive across a range of different environmental conditions through functional complementarity: Productivity in different environments. Journal of Applied Ecology, 48, 1117 – 1124.
dc.identifier.citedreferenceSteudel, B., Hector, A., Friedl, T., Löfke, C., Lorenz, M., Wesche, M. et al. ( 2012 ) Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecology Letters, 15, 1397 – 1405.
dc.identifier.citedreferenceStriebel, M., Schabhüttl, S., Hodapp, D., Hingsamer, P. & Hillebrand, H. ( 2016 ) Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. Oecologia, 182 ( 3 ), 815 – 827. https://doi.org/10.1007/s00442‐016‐3693‐3
dc.identifier.citedreferenceTabi, A., Petchey, O.L. & Pennekamp, F. ( 2019 ) Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecology Letters, 22, 1061 – 1071.
dc.identifier.citedreferenceThakur, M.P., Milcu, A., Manning, P., Niklaus, P.A., Roscher, C., Power, S. et al. ( 2015 ) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 21, 4076 – 4085.
dc.identifier.citedreferenceTilman, D., Isbell, F. & Cowles, J.M. ( 2014 ) Biodiversity and ecosystem functioning. Annual Review of Ecology Evolution and Systematics, 45, 471 – 493.
dc.identifier.citedreferenceTilman, D., Lehman, C.L. & Thomson, K.T. ( 1997 ) Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences, 94, 1857 – 1861.
dc.identifier.citedreferenceTilman, D., Reich, P.B. & Isbell, F. ( 2012 ) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences, 109, 10394 – 10397.
dc.identifier.citedreferenceUrban, M.C. ( 2015 ) Accelerating extinction risk from climate change. Science, 348, 571 – 573.
dc.identifier.citedreferencevan Moorsel, S.J., Hahl, T., Wagg, C., De Deyn, G.B., Flynn, D.F.B., Zuppinger‐Dingley, D. et al. ( 2018 ) Community evolution increases plant productivity at low diversity. Ecology Letters, 21, 128 – 137.
dc.identifier.citedreferenceVellend, M., Baeten, L., Myers‐Smith, I.H., Elmendorf, S.C., Beausejour, R., Brown, C.D. et al. ( 2013 ) Global meta‐analysis reveals no net change in local‐scale plant biodiversity over time. Proceedings of the National Academy of Sciences, 110, 19456 – 19459.
dc.identifier.citedreferenceViechtbauer, W. ( 2010 ) Conducting meta‐analyses in R with the metafor package. Journal of Statistical Software, 36, 1 – 48.
dc.identifier.citedreferenceWagg, C., O’Brien, M.J., Vogel, A., Scherer‐Lorenzen, M., Eisenhauer, N., Schmid, B. et al. ( 2017 ) Plant diversity maintains long‐term ecosystem productivity under frequent drought by increasing short‐term variation. Ecology, 98, 2952 – 2961.
dc.identifier.citedreferenceWang, Y., Cadotte, M.W., Chen, Y., Fraser, L.H., Zhang, Y., Huang, F. et al. ( 2019 ) Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nature Communications, 10, Article 3207.
dc.identifier.citedreferenceWright, A.J., Mommer, L., Barry, K. & van Ruijven, J. ( 2021 ) Stress gradients and biodiversity: monoculture vulnerability drives stronger biodiversity effects during drought years. Ecology, 102, e03193.
dc.identifier.citedreferenceWright, A., Schnitzer, S.A. & Reich, P.B. ( 2014 ) Living close to your neighbors: the importance of both competition and facilitation in plant communities. Ecology, 95, 2213 – 2223.
dc.identifier.citedreferenceWright, A.J., Wardle, D.A., Callaway, R. & Gaxiola, A. ( 2017 ) The overlooked role of facilitation in biodiversity experiments. Trends in Ecology and Evolution, 32, 383 – 390.
dc.identifier.citedreferenceYachi, S. & Loreau, M. ( 1999 ) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences, 96, 1463 – 1468.
dc.identifier.citedreferenceYuan, Z.Y., Jiao, F., Shi, X.R., Sardans, J., Maestre, F.T., Delgado‐Baquerizo, M. et al. ( 2017 ) Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife, 6, e23255.
dc.identifier.citedreferenceYvon‐Durocher, G., Allen, A.P., Cellamare, M., Dossena, M., Gaston, K.J., Leitao, M. et al. ( 2015 ) Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology, 13, e1002324.
dc.identifier.citedreferenceZhou, J., Xue, K., Xie, J., Deng, Y.E., Wu, L., Cheng, X. et al. ( 2012 ) Microbial mediation of carbon‐cycle feedbacks to climate warming. Nature Climate Change, 2, 106 – 110.
dc.identifier.citedreferenceZuppinger‐Dingley, D., Schmid, B., Petermann, J.S., Yadav, V., De Deyn, G.B. & Flynn, D.F.B. ( 2014 ) Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 515, 108 – 111.
dc.identifier.citedreferenceBaert, J.M., De Laender, F., Sabbe, K. & Janssen, C.R. ( 2016 ) Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology, 97, 3433 – 3440.
dc.identifier.citedreferenceBaert, J.M., Eisenhauer, N., Janssen, C.R. & De Laender, F. ( 2018 ) Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecology Letters, 21, 1191 – 1199.
dc.identifier.citedreferenceBalvanera, P., Pfisterer, A.B., Buchmann, N., He, J.‐S., Nakashizuka, T., Raffaelli, D. et al. ( 2006 ) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146 – 1156.
dc.identifier.citedreferenceBenkwitt, C.E., Wilson, S.K. & Graham, N.A.J. ( 2020 ) Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nature Ecology and Evolution, 4, 919 – 926.
dc.identifier.citedreferenceBertness, M.D. & Callaway, R. ( 1994 ) Positive interactions in communities. Trends in Ecology and Evolution, 9, 191 – 193.
dc.identifier.citedreferenceBestion, E., Barton, S., García, F.C., Warfield, R. & Yvon‐Durocher, G. ( 2020 ) Abrupt declines in marine phytoplankton production driven by warming and biodiversity loss in a microcosm experiment. Ecology Letters, 23, 457 – 466.
dc.identifier.citedreferenceBlowes, S.A., Supp, S.R., Antão, L.H., Bates, A., Bruelheide, H., Chase, J.M. et al. ( 2019 ) The geography of biodiversity change in marine and terrestrial assemblages. Science, 366, 339 – 345.
dc.identifier.citedreferenceBrauer, V.S., Stomp, M., Bouvier, T., Fouilland, E., Leboulanger, C., Confurius‐Guns, V. et al. ( 2015 ) Competition and facilitation between the marine nitrogen‐fixing cyanobacterium Cyanothece and its associated bacterial community. Frontiers in Microbiology, 5, Article 795.
dc.identifier.citedreferenceBurson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. ( 2018 ) Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology, 99, 1108 – 1118.
dc.identifier.citedreferenceCardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P. et al. ( 2012 ) Biodiversity loss and its impact on humanity. Nature, 486, 59 – 67.
dc.identifier.citedreferenceCardinale, B.J., Wright, J.P., Cadotte, M.W., Carroll, I.T., Hector, A., Srivastava, D.S. et al. ( 2007 ) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, 104, 18123 – 18128.
dc.identifier.citedreferenceCavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M. et al. ( 2019 ) Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 17, 569 – 586.
dc.identifier.citedreferenceChapin, F.S., Matson, P.A. & Vitousek, P.M. ( 2011 ) Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer.
dc.identifier.citedreferenceCowles, J.M., Wragg, P.D., Wright, A.J., Powers, J.S. & Tilman, D. ( 2016 ) Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Global Change Biology, 22, 741 – 749.
dc.identifier.citedreferenceCraven, D., Eisenhauer, N., Pearse, W.D., Hautier, Y., Isbell, F., Roscher, C. et al. ( 2018 ) Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2, 1579 – 1587.
dc.identifier.citedreferenceCraven, D., Isbell, F., Manning, P., Connolly, J., Bruelheide, H., Ebeling, A. et al. ( 2016 ) Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 ( 1694 ), 20150277.
dc.identifier.citedreferenceDe Boeck, H.J., Bloor, J.M.G., Kreyling, J., Ransijn, J.C.G., Nijs, I., Jentsch, A. et al. ( 2018 ) Patterns and drivers of biodiversity–stability relationships under climate extremes. Journal of Ecology, 106, 890 – 902.
dc.identifier.citedreferenceDe Boeck, H.J., Lemmens, C.M.H.M., Zavalloni, C., Gielen, B., Malchair, S., Carnol, M. et al. ( 2008 ) Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeoscience, 5, 585 – 594.
dc.identifier.citedreferenceDe Laender, F. ( 2018 ) Community‐ and ecosystem‐level effects of multiple environmental change drivers: Beyond null model testing. Global Change Biology, 24, 5021 – 5030.
dc.identifier.citedreferenceDe Laender, F., Rohr, J.R., Ashauer, R., Baird, D.J., Berger, U., Eisenhauer, N. et al. ( 2016 ) Reintroducing environmental change drivers in biodiversity‐ecosystem functioning research. Trends in Ecology and Evolution, 31, 905 – 915.
dc.identifier.citedreferenceDornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C. et al. ( 2014 ) Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296 – 299.
dc.identifier.citedreferenceDuffy, J.E., Godwin, C.M. & Cardinale, B.J. ( 2017 ) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261 – 264.
dc.identifier.citedreferenceEisenhauer, N., Hines, J., Isbell, F., van der Plas, F., Hobbie, S.E., Kazanski, C.E. et al. ( 2018 ) Plant diversity maintains multiple soil functions in future environments. eLife, 7, e41228.
dc.identifier.citedreferenceEisenhauer, N., Schielzeth, H., Barnes, A.D., Barry, K.E., Bonn, A., Brose, U. et al. ( 2019 ) Chapter One ‐ A multitrophic perspective on biodiversity–ecosystem functioning research. In: Eisenhauer, N., Bohan, D.A. & Dumbrell, A.J. (Eds.) Advances in Ecological Research, Mechanisms underlying the relationship between biodiversity and ecosystem function. Academic Press, pp. 1 – 54.
dc.identifier.citedreferenceFei, S., Jo, I., Guo, Q., Wardle, D.A., Fang, J., Chen, A. et al. ( 2018 ) Impacts of climate on the biodiversity‐productivity relationship in natural forests. Nature Communications, 9, 1 – 7.
dc.identifier.citedreferenceGarcía, F.C., Bestion, E., Warfield, R. & Yvon‐Durocher, G. ( 2018 ) Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences, 115, 10989 – 10994.
dc.identifier.citedreferenceGiling, D.P., Beaumelle, L., Phillips, H.R.P., Cesarz, S., Eisenhauer, N., Ferlian, O. et al. ( 2019 ) A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25, 763 – 774.
dc.identifier.citedreferenceGuerrero‐Ramírez, N.R., Craven, D., Reich, P.B., Ewel, J.J., Isbell, F., Koricheva, J. et al. ( 2017 ) Diversity‐dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology and Evolution, 1, 1639 – 1642.
dc.identifier.citedreferenceGuo, Y., Schöb, C., Ma, W., Mohammat, A., Liu, H., Yu, S. et al. ( 2019 ) Increasing water availability and facilitation weaken biodiversity‐biomass relationships in shrublands. Ecology, 100, e02624.
dc.identifier.citedreferenceHautier, Y., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hillebrand, H. et al. ( 2014 ) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521 – 525.
dc.identifier.citedreferenceHautier, Y., Tilman, D., Isbell, F., Seabloom, E.W., Borer, E.T. & Reich, P.B. ( 2015 ) Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348, 336 – 340.
dc.identifier.citedreferenceHe, Q., Bertness, M.D. & Altieri, A.H. ( 2013 ) Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters, 16, 695 – 706.
dc.identifier.citedreferenceHillebrand, H., Donohue, I., Harpole, W.S., Hodapp, D., Kucera, M., Lewandowska, A.M. et al. ( 2020 ) Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology and Evolution, 4, 1502 – 1509.
dc.identifier.citedreferenceHisano, M. & Chen, H.Y.H. ( 2020 ) Spatial variation in climate modifies effects of functional diversity on biomass dynamics in natural forests across Canada. Global Ecology and Biogeography, 29, 682 – 695.
dc.identifier.citedreferenceHisano, M., Searle, E.B. & Chen, H.Y.H. ( 2018 ) Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews, 93, 439 – 456.
dc.identifier.citedreferenceHoek, T.A., Axelrod, K., Biancalani, T., Yurtsev, E.A., Liu, J. & Gore, J. ( 2016 ) Resource availability modulates the cooperative and competitive nature of a microbial cross‐feeding mutualism. PLoS Biology, 14, e1002540.
dc.identifier.citedreferenceHooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L. et al. ( 2012 ) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105 – 108.
dc.identifier.citedreferenceHuang, Y., Chen, Y., Castro‐Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A. et al. ( 2018 ) Impacts of species richness on productivity in a large‐scale subtropical forest experiment. Science, 362, 80 – 83.
dc.identifier.citedreferenceIntergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services (IPBES). ( 2019 ). Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo.
dc.identifier.citedreferenceIsbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C. et al. ( 2015 ) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574 – 577.
dc.identifier.citedreferenceIsbell, F.I., Polley, H.W. & Wilsey, B.J. ( 2009 ) Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 12, 443 – 451.
dc.identifier.citedreferenceJessup, C.M., Kassen, R., Forde, S.E., Kerr, B., Buckling, A., Rainey, P.B. et al. ( 2004 ) Big questions, small worlds: microbial model systems in ecology. Trends in Ecology and Evolution, 19, 189 – 197.
dc.identifier.citedreferenceJiang, L. & Morin, P.J. ( 2004 ) Temperature‐dependent interactions explain unexpected responses to environmental warming in communities of competitors. Journal of Animal Ecology, 73, 569 – 576.
dc.identifier.citedreferenceJiang, M., Medlyn, B.E., Drake, J.E., Duursma, R.A., Anderson, I.C., Barton, C.V.M. et al. ( 2020 ) The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 580, 227 – 231.
dc.identifier.citedreferenceKoricheva, J., Gurevitch, J. & Mengersen, K. ( 2013 ) Handbook of meta‐analysis in ecology and evolution. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceLajeunesse, M.J. ( 2011 ) On the meta‐analysis of response ratios for studies with correlated and multi‐group designs. Ecology, 92, 2049 – 2055.
dc.identifier.citedreferenceLajeunesse, M.J. ( 2015 ) Bias and correction for the log response ratio in ecological meta‐analysis. Ecology, 96, 2056 – 2063.
dc.identifier.citedreferenceLiang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M.O., Alberti, G. et al. ( 2016 ) Positive biodiversity‐productivity relationship predominant in global forests. Science, 354, aaf8957.
dc.identifier.citedreferenceLoreau, M. ( 1998 ) Biodiversity and ecosystem functioning: a mechanistic model. Proceedings of the National Academy of Sciences, 95, 5632 – 5636.
dc.identifier.citedreferenceLoreau, M. & Hector, A. ( 2001 ) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72 – 76.
dc.identifier.citedreferenceMaestre, F.T., Callaway, R.M., Valladares, F. & Lortie, C.J. ( 2009 ) Refining the stress‐gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199 – 205.
dc.identifier.citedreferenceMetz, J. & Tielbörger, K. ( 2016 ) Spatial and temporal aridity gradients provide poor proxies for plant–plant interactions under climate change: a large‐scale experiment. Functional Ecology, 30, 20 – 29.
dc.identifier.citedreferenceMori, A.S. ( 2018 ) Environmental controls on the causes and functional consequences of tree species diversity. Journal of Ecology, 106, 113 – 125.
dc.identifier.citedreferenceMori, A.S., Furukawa, T. & Sasaki, T. ( 2013 ) Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews, 88, 349 – 364.
dc.identifier.citedreferenceNaeem, S., Bunker, D.E., Hector, A., Loreau, M. & Perrings, C. ( 2009 ) Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford biology. Oxford, NY: Oxford University Press.
dc.identifier.citedreferenceNakagawa, S., Noble, D.W.A., Senior, A.M. & Lagisz, M. ( 2017 ) Meta‐evaluation of meta‐analysis: ten appraisal questions for biologists. BMC Biology, 15, 1 – 14.
dc.identifier.citedreferenceNakagawa, S. & Santos, E.S.A. ( 2012 ) Methodological issues and advances in biological meta‐analysis. Evolutionary Ecology, 26, 1253 – 1274.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.