Show simple item record

allodb: An R package for biomass estimation at globally distributed extratropical forest plots

dc.contributor.authorGonzalez-Akre, Erika
dc.contributor.authorPiponiot, Camille
dc.contributor.authorLepore, Mauro
dc.contributor.authorHerrmann, Valentine
dc.contributor.authorLutz, James A.
dc.contributor.authorBaltzer, Jennifer L.
dc.contributor.authorDick, Christopher W.
dc.contributor.authorGilbert, Gregory S.
dc.contributor.authorHe, Fangliang
dc.contributor.authorHeym, Michael
dc.contributor.authorHuerta, Alejandra I.
dc.contributor.authorJansen, Patrick A.
dc.contributor.authorJohnson, Daniel J.
dc.contributor.authorKnapp, Nikolai
dc.contributor.authorKrál, Kamil
dc.contributor.authorLin, Dunmei
dc.contributor.authorMalhi, Yadvinder
dc.contributor.authorMcMahon, Sean M.
dc.contributor.authorMyers, Jonathan A.
dc.contributor.authorOrwig, David
dc.contributor.authorRodríguez-Hernández, Diego I.
dc.contributor.authorRusso, Sabrina E.
dc.contributor.authorShue, Jessica
dc.contributor.authorWang, Xugao
dc.contributor.authorWolf, Amy
dc.contributor.authorYang, Tonghui
dc.contributor.authorDavies, Stuart J.
dc.contributor.authorAnderson-Teixeira, Kristina J.
dc.date.accessioned2022-02-07T20:21:59Z
dc.date.available2023-03-07 15:21:58en
dc.date.available2022-02-07T20:21:59Z
dc.date.issued2022-02
dc.identifier.citationGonzalez-Akre, Erika ; Piponiot, Camille; Lepore, Mauro; Herrmann, Valentine; Lutz, James A.; Baltzer, Jennifer L.; Dick, Christopher W.; Gilbert, Gregory S.; He, Fangliang; Heym, Michael; Huerta, Alejandra I.; Jansen, Patrick A.; Johnson, Daniel J.; Knapp, Nikolai; Král, Kamil ; Lin, Dunmei; Malhi, Yadvinder; McMahon, Sean M.; Myers, Jonathan A.; Orwig, David; Rodríguez-Hernández, Diego I. ; Russo, Sabrina E.; Shue, Jessica; Wang, Xugao; Wolf, Amy; Yang, Tonghui; Davies, Stuart J.; Anderson-Teixeira, Kristina J. (2022). "allodb: An R package for biomass estimation at globally distributed extratropical forest plots." Methods in Ecology and Evolution (2): 330-338.
dc.identifier.issn2041-210X
dc.identifier.issn2041-210X
dc.identifier.urihttps://hdl.handle.net/2027.42/171516
dc.description.abstractAllometric equations for calculation of tree above- ground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratropics.Here we present an integrated R package, allodb, containing systematically selected published allometric equations and proposed functions to compute AGB. The data component of the package is based on 701 woody species identified at 24 large Forest Global Earth Observatory (ForestGEO) forest dynamics plots representing a wide diversity of extratropical forests.A total of 570 parsed allometric equations to estimate individual tree biomass were retrieved, checked and combined using a weighting function designed to ensure optimal equation selection over the full tree size range with smooth transitions across equations. The equation dataset can be customized with built- in functions that subset the original dataset and add new equations.Although equations were curated based on a limited set of forest communities and number of species, this resource is appropriate for large portions of the global extratropics and can easily be expanded to cover novel forest types.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othertree biomass
dc.subject.othertree allometry
dc.subject.othertemperate forest
dc.subject.otherR
dc.subject.otherForest Global Earth Observatory (ForestGEO)
dc.subject.otherforest carbon storage
dc.subject.otherextratropics
dc.subject.otherabove- ground biomass
dc.titleallodb: An R package for biomass estimation at globally distributed extratropical forest plots
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171516/1/mee313756_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171516/2/mee313756-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171516/3/mee313756.pdf
dc.identifier.doi10.1111/2041-210X.13756
dc.identifier.sourceMethods in Ecology and Evolution
dc.identifier.citedreferenceKnapp, N., Fischer, R., Cazcarra- Bes, V., & Huth, A. ( 2020 ). Structure metrics to generalize biomass estimation from lidar across forest types from different continents. Remote Sensing of Environment, 237, 111597. https://doi.org/10.1016/j.rse.2019.111597
dc.identifier.citedreferenceCondit, R. ( 1998 ). Tropical Forest Census Plots. Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer. https://doi.org/10.1007/978- 3- 662- 03664- 8
dc.identifier.citedreferenceConti, G., Gorné, L. D., Zeballos, S. R., Lipoma, M. L., Gatica, G., Kowaljow, E., Whitworth- Hulse, J. I., Cuchietti, A., Poca, M., Pestoni, S., & Fernandes, P. M. ( 2019 ). Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography, 28 ( 7 ), 961 - 975. https://doi.org/10.1111/geb.12907
dc.identifier.citedreferenceCushman, K. C., Muller- Landau, H. C., Condit, R. S., & Hubbell, S. P. ( 2014 ). Improving estimates of biomass change in buttressed trees using tree taper models. Methods in Ecology and Evolution, 5 ( 6 ), 573 - 582. https://doi.org/10.1111/2041- 210X.12187
dc.identifier.citedreferenceDaba, D. E., & Soromessa, T. ( 2019 ). The accuracy of species- specific allometric equations for estimating aboveground biomass in tropical moist montane forests: Case Study of albizia grandibracteata and trichilia dregeana. Carbon Balance and Management, 14 ( 1 ), 18. https://doi.org/10.1186/s13021- 019- 0134- 8
dc.identifier.citedreferenceDavies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson- Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., - ¦ Zuleta, D. ( 2021 ). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253, 108907. https://doi.org/10.1016/j.biocon.2020.108907
dc.identifier.citedreferenceDuncanson, L. I., Dubayah, R. O., & Enquist, B. J. ( 2015 ). Assessing the general patterns of forest structure: Quantifying tree and forest allometric scaling relationships in the United States. Global Ecology and Biogeography, 24 ( 12 ), 1465 - 1475. https://doi.org/10.1111/geb.12371
dc.identifier.citedreferenceDuncanson, L. I., Rourke, O., & Dubayah, R. ( 2015 ). Small sample sizes yield biased allometric equations in temperate forests. Scientific Reports, 5 ( 1 ), 17153. https://doi.org/10.1038/srep17153
dc.identifier.citedreferenceFalster, D. S., Duursma, R. A., Ishihara, M. I., Barneche, D. R., FitzJohn, R. G., VÃ¥rhammar, A., Aiba, M., Ando, M., Anten, N., Aspinwall, M. J., Baltzer, J. L., Baraloto, C., Battaglia, M., Battles, J. J., Bond- Lamberty, B., van Breugel, M., Camac, J., Claveau, Y., Coll, L., - ¦ York, R. A. ( 2015 ). BAAD: A Biomass And Allometry Database for woody plants. Ecology, 96 ( 5 ), 1445 - 1445. https://doi.org/10.1890/14- 1889.1
dc.identifier.citedreferenceFatemi, F. R., Yanai, R. D., Hamburg, S. P., Vadeboncoeur, M. A., Arthur, M. A., Briggs, R. D., & Levine, C. R. ( 2011 ). Allometric equations for young northern hardwoods: The importance of age- specific equations for estimating aboveground biomass. Canadian Journal of Forest Research, 41 ( 4 ), 881 - 891. https://doi.org/10.1139/x10- 248
dc.identifier.citedreferenceFeldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum- Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M., - ¦ Lloyd, J. ( 2011 ). Height- diameter allometry of tropical forest trees. Biogeosciences, 8 ( 5 ), 1081 - 1106. https://doi.org/10.5194/bg- 8- 1081- 2011
dc.identifier.citedreferenceFeldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., Lopez- Gonzalez, G., Banin, L., Abu Salim, K., Affum- Baffoe, K., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L. E. O. C., Araujo Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C., G. A., - ¦ Phillips, O. L. ( 2012 ). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9 ( 8 ), 3381 - 3403. https://doi.org/10.5194/bg- 9- 3381- 2012
dc.identifier.citedreferenceFenn, K., Malhi, Y., Morecroft, M., Lloyd, C., & Thomas, M. ( 2015 ). The carbon cycle of a maritime ancient temperate broadleaved woodland at seasonal and annual scales. Ecosystems, 18 ( 1 ), 1 - 15. https://doi.org/10.1007/s10021- 014- 9793- 1
dc.identifier.citedreferenceForrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz- Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., & Sileshi, G. W. ( 2017 ). Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396, 160 - 175. https://doi.org/10.1016/j.foreco.2017.04.011
dc.identifier.citedreferenceFriedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., - ¦ Zeng, N. ( 2006 ). Climate- carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19 ( 14 ), 3337 - 3353. https://doi.org/10.1175/jcli3800.1
dc.identifier.citedreferenceGoodman, R. C., Phillips, O. L., & Baker, T. R. ( 2014 ). The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24 ( 4 ), 680 - 698. https://www.jstor.org/stable/24432182
dc.identifier.citedreferenceGower, S. T., Vogt, K. A., & Grier, C. C. ( 1992 ). Carbon dynamics of rocky mountain Douglas- Fir: Influence of water and nutrient availability. Ecological Monographs, 62 ( 1 ), 43 - 65. https://doi.org/10.2307/2937170
dc.identifier.citedreferenceGrassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., & Penman, J. ( 2017 ). The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7 ( 3 ), 220 - 226. https://doi.org/10.1038/nclimate3227
dc.identifier.citedreferenceGriscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., - ¦ Fargione, J. ( 2017 ). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 44 ), 11645 - 11650. https://doi.org/10.1073/pnas.1710465114
dc.identifier.citedreferenceHarmon, M. E., Woodall, C. W., Fasth, B., Sexton, J., & Yatkov, M. ( 2011 ). Differences between standing and downed dead tree wood density reduction factors: A comparison across decay classes and tree species. U.S. Department of Agriculture, Forest Service, Northern Research Station. 40 p. 15: 1- 40. https://doi.org/10.2737/NRS- RP- 15
dc.identifier.citedreferenceHelcoski, R., Tepley, A. J., Pederson, N., McGarvey, J. C., Meakem, V., Herrmann, V., Thompson, J. R., & Anderson- Teixeira, K. J. ( 2019 ). Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytologist, 223 ( 3 ), 1204 - 1216. https://doi.org/10.1111/nph.15906
dc.identifier.citedreferenceHenry, M., Bombelli, A., Trotta, C., Alessandrini, A., Birigazzi, L., Sola, G., Vieilledent, G., Santenoise, P., Longuetaud, F., Valentini, R., Picard, N., & Saint- André, L. ( 2013 ). GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest - Biogeosciences and Forestry, 6 ( 6 ), 326 - 330. https://doi.org/10.3832/ifor0901- 006
dc.identifier.citedreferenceHoughton, R. A. ( 2005 ). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11 ( 6 ), 945 - 958. https://doi.org/10.1111/j.1365- 2486.2005.00955.x
dc.identifier.citedreferenceHoughton, R. A. ( 2008 ). Biomass. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (pp. 448 - 453 ). Academic Press. https://doi.org/10.1016/B978- 008045405- 4.00462- 6
dc.identifier.citedreferenceJanik, D., Kral, K., Adam, D., Vrska, T., & Lutz, J. A. ( 2017 ). ForestGEO dead wood census protocol. Digital Commons at Utah State University. https://doi.org/10.26078/vcdr- y089
dc.identifier.citedreferenceJansen, J., Sevenster, J., & Faber, P. J. ( 1996 ). Opbrengst Tabellen Voor Belangrijke Boomsoorten in Nederland. IBN rapport nr. 221 tevens verschenen als: Hinkeloord Reports No. 17. ISSN: 0928- 6888.
dc.identifier.citedreferenceJenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. ( 2004 ). Comprehensive database of diameter- based biomass regressions for North American tree species (p. 45 ). Gen. Tech. Rep. NE- 319. U.S. Department of Agriculture, Forest Service, Northeastern Research Station. https://doi.org/10.2737/NE- GTR- 319
dc.identifier.citedreferenceKöppen, W. ( 2011 ). The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorologische Zeitschrift, 20 ( 3 ), 351 - 360. https://doi.org/10.1127/0941- 2948/2011/105
dc.identifier.citedreferenceLines, E. R., Zavala, M. A., Purves, D. W., & Coomes, D. A. ( 2012 ). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21 ( 10 ), 1017 - 1028. https://doi.org/10.1111/j.1466- 8238.2011.00746.x
dc.identifier.citedreferenceLuo, Y., Wang, X., & Ouyang, Z. ( 2018 ). A China- s normalized tree biomass equation dataset. PANGAEA. https://doi.org/10.1594/PANGAEA.895244
dc.identifier.citedreferenceLuo, Y., Wang, X., Ouyang, Z., Lu, F., Feng, L., & Tao, J. ( 2020 ). A review of biomass equations for China’s tree species. Earth System Science Data, 12 ( 1 ), 21 - 40. https://doi.org/10.5194/essd- 12- 21- 2020
dc.identifier.citedreferenceLutz, J. A. ( 2005 ). The contribution of mortality to early coniferous forest development. {PhD Thesis}, University of Washington. Thesis. 95 p.
dc.identifier.citedreferenceLutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., Anderson- Teixeira, K. J., Andrade, A., Baltzer, J., Becker, K. M. L., Blomdahl, E. M., Bourg, N. A., Bunyavejchewin, S., Burslem, D. F. R. P., Cansler, C. A., Cao, K. E., Cao, M., Cárdenas, D., Chang, L.- W., - ¦ Kerkhoff, A. ( 2018 ). Global importance of large- diameter trees. Global Ecology and Biogeography, 27 ( 7 ), 849 - 864. https://doi.org/10.1111/geb.12747
dc.identifier.citedreferenceLutz, J. A., Matchett, J. R., Tarnay, L. W., Smith, D. F., Becker, K. M. L., Furniss, T. J., & Brooks, M. L. ( 2017 ). Fire and the distribution and uncertainty of carbon sequestered as aboveground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks. Land, 6 ( 1 ), 10. https://doi.org/10.3390/land6010010
dc.identifier.citedreferenceLutz, J. A., Schwindt, K. A., Furniss, T. J., Freund, J. A., Swanson, M. E., Hogan, K. I., Kenagy, G. E., & Larson, A. J. ( 2014 ). Community composition and allometry of leucothoe Davisiae, Cornus Sericea, and Chrysolepis sempervirens. Canadian Journal of Forest Research, 44 ( 6 ), 677 - 683. https://doi.org/10.1139/cjfr- 2013- 0524
dc.identifier.citedreferenceMeakem, V., Tepley, A. J., Gonzalez- Akre, E. B., Herrmann, V., Muller- Landau, H. C., Joseph Wright, S., Hubbell, S. P., Condit, R., & Anderson- Teixeira, K. J. ( 2018 ). Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist, 219 ( 3 ), 947 - 958. https://doi.org/10.1111/nph.14633
dc.identifier.citedreferenceMuukkonen, P. ( 2007 ). Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126 ( 2 ), 157 - 166. https://doi.org/10.1007/s10342- 007- 0168- 4
dc.identifier.citedreferenceNávar, J. ( 2009 ). Biomass component equations for Latin American species and groups of species. Annals of Forest Science, 66 ( 2 ), 208 - 208. https://doi.org/10.1051/forest/2009001
dc.identifier.citedreferenceNgomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Botsika Bobé, K. H., Mikala Okouyi, C., Nyangadouma, R., Lépengué, N., Mbatchi, B., & Picard, N. ( 2014 ). Site- specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management, 312, 1 - 9. https://doi.org/10.1016/j.foreco.2013.10.029
dc.identifier.citedreferencePaul, K. I., Roxburgh, S. H., Chave, J., England, J. R., Zerihun, A., Specht, A., Lewis, T., Bennett, L. T., Baker, T. G., Adams, M. A., Huxtable, D., Montagu, K. D., Falster, D. S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., - ¦ Sinclair, J. ( 2016 ). Testing the generality of above- ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 22 ( 6 ), 2106 - 2124. https://doi.org/10.1111/gcb.13201
dc.identifier.citedreferencePoorter, H., Jagodzinski, A. M., Ruiz- Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., Usoltsev, V. A., Buckley, T. N., Reich, P. B., & Sack, L. ( 2015 ). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208 ( 3 ), 736 - 749. https://doi.org/10.1111/nph.13571
dc.identifier.citedreferenceR Core Team. ( 2018 ). R: A language and environment for statistical computing (version 3.6.3). R Foundation for Statistical Computing. http://www.R- project.org/
dc.identifier.citedreferenceRéjou- Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. ( 2017 ). biomass: An R package for estimating above- ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8 ( 9 ), 1163 - 1167. https://doi.org/10.1111/2041- 210x.12753
dc.identifier.citedreferenceRojas- García, F., De Jong, B. H. J., Martínez- Zurimendí, P., & Paz- Pellat, F. ( 2015 ). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72 ( 6 ), 835 - 864. https://doi.org/10.1007/s13595- 015- 0456- y
dc.identifier.citedreferenceRoxburgh, S. H., Paul, K. I., Clifford, D., Englana, J. R., & Raison, R. J. ( 2015 ). Guidelines for constructing allometric models for the prediction of woody biomass: How many individuals to harvest? Ecosphere, 6 ( 3 ), 38. https://doi.org/10.1890/ES14- 00251.1
dc.identifier.citedreferenceRutishauser, E., Noor- an, F., Laumonier, Y., Halperin, J., Rufi- ie, Hergoualc- h, K., & Verchot, L. ( 2013 ). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 307, 219 - 225. https://doi.org/10.1016/j.foreco.2013.07.013
dc.identifier.citedreferenceSchepaschenko, D., Shvidenko, A., Usoltsev, V., Lakyda, P., Luo, Y., Vasylyshyn, R., Lakyda, I., Myklush, Y., See, L., McCallum, I., Fritz, S., Kraxner, F., & Obersteiner, M. ( 2017 ). A dataset of forest biomass structure for Eurasia. Scientific Data, 4 ( 1 ), 170070. https://doi.org/10.1038/sdata.2017.70
dc.identifier.citedreferenceSomogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., & Weiss, P. ( 2007 ). Indirect methods of large- scale forest biomass estimation. European Journal of Forest Research, 126 ( 2 ), 197 - 207. https://doi.org/10.1007/s10342- 006- 0125- 7
dc.identifier.citedreferenceStovall, A. E. L., Anderson- Teixeira, K. J., & Shugart, H. H. ( 2018 ). Assessing terrestrial laser scanning for developing non- destructive biomass allometry. Forest Ecology and Management, 427, 217 - 229. https://doi.org/10.1016/j.foreco.2018.06.004
dc.identifier.citedreferenceSullivan, M. J. P., Lewis, S. L., Hubau, W., Qie, L., Baker, T. R., Banin, L. F., Chave, J., Cuni- Sanchez, A., Feldpausch, T. R., Lopez- Gonzalez, G., Arets, E., Ashton, P., Bastin, J.- F., Berry, N. J., Bogaert, J., Boot, R., Brearley, F. Q., Brienen, R., Burslem, D. F. R. P., - ¦ Phillips, O. L. ( 2018 ). Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 9 ( 5 ), 1179 - 1189. https://doi.org/10.1111/2041- 210X.12962
dc.identifier.citedreferencevan Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. ( 2011 ). Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management, 262 ( 8 ), 1648 - 1657. https://doi.org/10.1016/j.foreco.2011.07.018
dc.identifier.citedreferenceZolkos, S. G., Goetz, S. J., & Dubayah, R. ( 2013 ). A meta- analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289 - 298. https://doi.org/10.1016/j.rse.2012.10.017
dc.identifier.citedreferenceAnderson- Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez- Akre, E. B., Muller- Landau, H. C., Joseph Wright, S., Abu Salim, K., Almeyda Zambrano, A. M., Alonso, A., Baltzer, J. L., Basset, Y., Bourg, N. A., Broadbent, E. N., Brockelman, W. Y., Bunyavejchewin, S., Burslem, D. F. R. P., Butt, N., Cao, M., Cardenas, D., - ¦ Zimmerman, J. ( 2015 ). CTFS- ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change Biology, 21 ( 2 ), 528 - 549. https://doi.org/10.1111/gcb.12712
dc.identifier.citedreferenceAnderson- Teixeira, K. J., Herrmann, V., Rollinson, C. R., Gonzalez, B., Gonzalez- Akre, E. B., Pederson, N., Alexander, M. R., Allen, C. D., Alfaro- Sánchez, R., Awada, T., Baltzer, J. L., Baker, P. J., Birch, J. D., Bunyavejchewin, S., Cherubini, P., Davies, S. J., Dow, C., Helcoski, R., KaÅ¡par, J., - ¦ Zuidema, P. A. ( 2021 ). Joint effects of climate, tree size, and year on annual tree growth derived from tree- ring records of ten globally distributed forests. Global Change Biology, https://doi.org/10.1111/gcb.15934
dc.identifier.citedreferenceBryant, C., Wheeler, N., Rubel, F., & French, R. ( 2017 ). Kgc: Koeppen- Geiger climatic zones. R package version 1.0.0.2. https://CRAN.R- project.org/package=kgc
dc.identifier.citedreferenceBuendia, C., Eduardo, S. G., Limmeechokchai, B., Pipatti, R., Rojas, Y., Sturgiss, R., Tanabe, K., & Wirth, T., ( 2019 ). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf
dc.identifier.citedreferenceBurt, A., Calders, K., Cuni- Sanchez, A., Gómez- Dans, J., Lewis, P., Lewis, S. L., Malhi, Y., & Phillips, O. L., Disney, M. ( 2020 ). Assessment of Bias in Pan- Tropical Biomass Predictions. Frontiers in Forests and Global Change, 3, https://doi.org/10.3389/ffgc.2020.00012
dc.identifier.citedreferenceChamberlain, S., Szoecs, E., Foster, Z., Arendsee, Z., Boettiger, C., Ram, K., Baumgartner, J., O’Donnell, J., Oksanen, J., Greshake Tzovaras, B., Marchand, P., Tran, V., Salmon, M., Li, G., & Grenié, M. ( 2020 ). Taxize: Taxonomic information from around the web. R package v0.9.9. Retrieved from https://taxize.dev/
dc.identifier.citedreferenceChave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.- P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. ( 2005 ). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145 ( 1 ), 87 - 99. https://doi.org/10.1007/s00442- 005- 0100- x
dc.identifier.citedreferenceChave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. ( 2004 ). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society B: Biological Sciences, 359 ( 1443 ), 409 - 420. https://doi.org/10.1098/rstb.2003.1425
dc.identifier.citedreferenceChave, J., Davies, S. J., Phillips, O. L., Lewis, S. L., Sist, P., Schepaschenko, D., Armston, J., Baker, T. R., Coomes, D., Disney, M., Duncanson, L., Hérault, B., Labrière, N., Meyer, V., Réjou- Méchain, M., Scipal, K., & Saatchi, S. ( 2019 ). Ground data are essential for biomass remote sensing missions. Surveys in Geophysics, 40 ( 4 ), 863 - 880. https://doi.org/10.1007/s10712- 019- 09528- w
dc.identifier.citedreferenceChave, J., Réjou- Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez- Yrízar, A., Mugasha, W. A., Muller- Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz- Malavassi, E., - ¦ Vieilledent, G. ( 2014 ). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20 ( 10 ), 3177 - 3190. https://doi.org/10.1111/gcb.12629
dc.identifier.citedreferenceChen, D., & Chen, H. W. ( 2013 ). Using the Köppen classification to quantify climate variation and change: An example for 1901- 2010. Environmental Development, 6, 69 - 79. https://doi.org/10.1016/j.envdev.2013.03.007
dc.identifier.citedreferenceChojnacky, D. C., Heath, L. S., & Jenkins, J. C. ( 2014 ). Updated generalized biomass equations for North American tree species. Forestry, 87 ( 1 ), 129 - 151. https://doi.org/10.1093/forestry/cpt053
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.