Show simple item record

Synergetic effect of aramid nanofiber‐graphene oxide hybrid filler on the properties of rubber compounds for tire tread application

dc.contributor.authorJung, Jaehyun
dc.contributor.authorSodano, Henry A.
dc.date.accessioned2022-02-07T20:22:04Z
dc.date.available2023-05-07 15:22:02en
dc.date.available2022-02-07T20:22:04Z
dc.date.issued2022-04-05
dc.identifier.citationJung, Jaehyun; Sodano, Henry A. (2022). "Synergetic effect of aramid nanofiber‐graphene oxide hybrid filler on the properties of rubber compounds for tire tread application." Journal of Applied Polymer Science 139(13): n/a-n/a.
dc.identifier.issn0021-8995
dc.identifier.issn1097-4628
dc.identifier.urihttps://hdl.handle.net/2027.42/171518
dc.description.abstractThe properties of rubber compounds used in tire tread largely contribute to the overall performance of tires in vehicles. Among the various ingredients used, reinforcing fillers are known for having the most significant effect on the static and dynamic properties of rubber compounds. In this work, two strong nanoscale materials, aramid nanofibers (ANFs) and graphene oxides (GOs), are modified using a silane coupling agent and combined to form a novel hybrid filler. The functionalized ANF/GO (fANF/GO) hybrid filler is obtained by adding functionalized GOs (fGOs) into functionalized ANFs (fANFs). The fANF/GO reinforced rubber compounds are then fabricated and tested to investigate the effect of the novel hybrid filler on mechanical and dynamic mechanical properties. The prepared rubber compounds using hybrid fillers exhibit improved mechanical properties and abrasion resistance compared to rubber compounds only reinforced using fANF or fGO alone and reference compounds. Moreover, dynamic mechanical analysis reveals a 21.8% decrease in the rolling resistance of fANF/GO reinforced rubber samples while preserving wet grip performance. Thus, this research demonstrates the potential of the ANFs and GOs‐based functionalized hybrid fillers for the application of high‐performance tire treads.Aramid nanofibers (ANFs) and graphene oxides (GOs) are modified using a silane coupling agent and combined to form a novel hybrid filler. The functionalized ANF/GO (fANF/GO) hybrid fillers are used to reinforce rubber compounds for tire tread. The prepared rubber compounds using hybrid fillers exhibit improved mechanical properties, wear resistance, and fuel efficiency compared to rubber compounds reinforced using fANF or fGO alone and reference compounds.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othertire
dc.subject.otherviscosity and viscoelasticity
dc.subject.otheraramid nanofibers
dc.subject.othermechanical properties
dc.subject.othernanocomposite
dc.subject.otherrubber
dc.titleSynergetic effect of aramid nanofiber‐graphene oxide hybrid filler on the properties of rubber compounds for tire tread application
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelManagement
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171518/1/app51856_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171518/2/app51856.pdf
dc.identifier.doi10.1002/app.51856
dc.identifier.sourceJournal of Applied Polymer Science
dc.identifier.citedreferenceJ. B. Donnet, Rubber Chem. Technol. 1998, 71, 323.
dc.identifier.citedreferenceM. Yang, K. Cao, B. Yeom, M. D. Thouless, A. Waas, E. M. Arruda, N. A. Kotov, J. Compos. Mater. 1873, 2015, 49.
dc.identifier.citedreferenceY. Guan, W. Li, Y. Zhang, Z. Shi, J. Tan, F. Wang, Y. Wang, Compos. Sci. Technol. 2017, 144, 193.
dc.identifier.citedreferenceL. Xu, X. Zhao, C. Xu, N. A. Kotov, Adv. Mater. 2018, 30, 1.
dc.identifier.citedreferenceJ. Fan, Z. Shi, L. Zhang, J. Wang, J. Yin, Nanoscale 2012, 4, 7046.
dc.identifier.citedreferenceY. Chen, Q. Yin, X. Zhang, W. Zhang, H. Jia, Q. Ji, F. Yang, X. Rui, Compos. Part B Eng. 2019, 166, 196.
dc.identifier.citedreferenceX. Zhang, Y. Chen, Q. Yin, J. Wu, W. Song, A. Mohamed, H. Jia, F. Yang, X. Rui, Mater. Chem. Phys. 2019, 238, 121926.
dc.identifier.citedreferenceS. H. Song, Macromol. Chem. Phys. 2016, 217, 2617.
dc.identifier.citedreferenceB. Pradhan, S. K. Srivastava, Polym. Int. 2014, 63, 1219.
dc.identifier.citedreferenceS. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, R. S. Ruoff, Carbon N.Y. 2007, 45, 1558.
dc.identifier.citedreferenceJ. Nasser, J. Lin, H. Sodano, J. Appl. Phys. 2018, 124, 045305.
dc.identifier.citedreferenceB. A. Patterson, M. H. Malakooti, J. Lin, A. Okorom, H. A. Sodano, Compos. Sci. Technol. 2018, 161, 92.
dc.identifier.citedreferenceM. Lian, J. Fan, Z. Shi, H. Li, J. Yin, Polymer 2014, 55, 2578.
dc.identifier.citedreferenceJ. E. Baer, M. Carmack, J. Am. Chem. Soc. 1949, 71, 1215.
dc.identifier.citedreferenceC. K. Hong, H. Kim, C. Ryu, C. Nah, Y. Huh, S. Kaang, J. Mater. Sci. 2007, 42, 8391.
dc.identifier.citedreferenceE. Cichomski, W. K. Dierkes, T. V. Tolpekina, S. Schultz, J. W. M. Noordermeer, KGK, Kautsch. Gummi Kunstst. 2014, 67, 50.
dc.identifier.citedreferenceR. R. Rahalkar, Rubber Chem. Technol. 1989, 62, 246.
dc.identifier.citedreferenceG. Heinrich, Rubber Chem. Technol. 1997, 70, 1.
dc.identifier.citedreferenceS. Mihara, R. N. Datta, J. W. M. Noordermeer, Rubber Chem. Technol. 2009, 82, 524.
dc.identifier.citedreferenceK. E. Polmanteer, C. W. Lentz, Rubber Chem. Technol. 1975, 48, 795.
dc.identifier.citedreferenceZ. Tang, X. Wu, B. Guo, L. Zhang, D. Jia, J. Mater. Chem. 2012, 22, 7492.
dc.identifier.citedreferenceJ. Wu, G. Huang, H. Li, S. Wu, Y. Liu, J. Zheng, Polymer 1930, 2013, 54.
dc.identifier.citedreferenceW. Xing, H. Li, G. Huang, L. H. Cai, J. Wu, Compos. Sci. Technol. 2017, 144, 223.
dc.identifier.citedreferenceZ. Yang, J. Liu, R. Liao, G. Yang, X. Wu, Z. Tang, B. Guo, L. Zhang, Y. Ma, Q. Nie, F. Wang, Compos. Sci. Technol. 2016, 132, 68.
dc.identifier.citedreferenceA. Das, K. W. Stöckelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Klüppel, G. Heinrich, Polymer 2008, 49, 5276.
dc.identifier.citedreferenceH. H. Le, M. N. Sriharish, S. Henning, J. Klehm, M. Menzel, W. Frank, S. Wießner, A. Das, K. W. Stöckelhuber, G. Heinrich, H. J. Radusch, Compos. Sci. Technol. 2014, 90, 180.
dc.identifier.citedreferenceY. Lu, J. Liu, G. Hou, J. Ma, W. Wang, F. Wei, L. Zhang, Compos. Sci. Technol. 2016, 137, 94.
dc.identifier.citedreferenceS. Praveen, P. K. Chattopadhyay, P. Albert, V. G. Dalvi, B. C. Chakraborty, S. Chattopadhyay, Compos. Part A Appl. Sci. Manuf. 2009, 40, 309.
dc.identifier.citedreferenceJ. Carretero‐González, H. Retsos, R. Verdejo, S. Toki, B. S. Hsiao, E. P. Giannelis, M. A. López‐Manchado, Macromolecules 2008, 41, 6763.
dc.identifier.citedreferenceJ. Wu, X. Zhang, K. Jiang, H. Jia, X. Rui, F. Yang, Fibers Polym. 1808, 2020, 21.
dc.identifier.citedreferenceK. P. Surya, S. Bhattacharya, R. Mukhopadhyay, K. Naskar, A. K. Bhowmick, Rubber Chem. Technol. 2020, 93, 471.
dc.identifier.citedreferenceJ. Jung, H. A. Sodano, ACS Appl. Polym. Mater. 2020, 2, 4874.
dc.identifier.citedreferenceM. Pingot, B. Szadkowski, M. Zaborski, Polym. Adv. Technol. 2018, 29, 1661.
dc.identifier.citedreferenceJ. T. Byers, Rubber Chem. Technol. 2002, 75, 527.
dc.identifier.citedreferenceW. Kaewsakul, K. Sahakaro, W. K. Dierkes, J. W. M. Noordermeer, Rubber Chem. Technol. 2012, 85, 277.
dc.identifier.citedreferenceC. Y. Lee, J. H. Bae, T. Y. Kim, S. H. Chang, S. Y. Kim, Compos. Part A Appl. Sci. Manuf. 2015, 75, 11.
dc.identifier.citedreferenceY. K. Kim, D. H. Min, Carbon N.Y. 2010, 48, 4283.
dc.identifier.citedreferenceX. Li, W. Nie, Y. Xu, Y. Zhou, P. Chen, C. Zhang, Compos. Part B Eng. 2020, 198, 108234.
dc.identifier.citedreferenceX. Liu, W. Kuang, B. Guo, Polymer 2015, 56, 553.
dc.identifier.citedreferenceY. Mao, S. Wen, Y. Chen, F. Zhang, P. Panine, T. W. Chan, L. Zhang, Y. Liang, L. Liu, Sci. Rep. 2013, 3, 1.
dc.identifier.citedreferenceM. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless, N. A. Kotov, ACS Nano 2011, 5, 6945.
dc.identifier.citedreferenceJ. Lin, S. H. Bang, M. H. Malakooti, H. A. Sodano, ACS Appl. Mater. Interfaces 2017, 9, 11167.
dc.identifier.citedreferenceJ. Jung, H. A. Sodano, Polymer 2020, 195, 122438.
dc.identifier.citedreferenceQ. Kuang, D. Zhang, J. C. Yu, Y. W. Chang, M. Yue, Y. Hou, M. Yang, J. Phys. Chem. C 2015, 119, 27467.
dc.identifier.citedreferenceJ. Han, X. Zhang, W. Guo, C. Wu, J. Appl. Polym. Sci. 2006, 100, 3707.
dc.identifier.citedreferenceX. Cao, C. Xu, Y. Liu, Y. Chen, Carbohydr. Polym. 2013, 92, 69.
dc.identifier.citedreferenceP. Manoharan, K. Naskar, J. Appl. Polym. Sci. 2016, 133, 43531.
dc.identifier.citedreferenceP. Thaptong, P. Sae‐Oui, C. Sirisinha, Rubber Chem. Technol. 2017, 90, 699.
dc.identifier.citedreferenceM. L. Studebaker, Rubber Chem. Technol. 1957, 30, 1400.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.