Show simple item record

Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations

dc.contributor.authorCaspi, Amir
dc.contributor.authorBarthelemy, M.
dc.contributor.authorBussy-Virat, C. D.
dc.contributor.authorCohen, I. J.
dc.contributor.authorDeForest, C. E.
dc.contributor.authorJackson, D. R.
dc.contributor.authorVourlidas, A.
dc.contributor.authorNieves-Chinchilla, T.
dc.date.accessioned2022-02-07T20:22:08Z
dc.date.available2023-03-07 15:22:07en
dc.date.available2022-02-07T20:22:08Z
dc.date.issued2022-02
dc.identifier.citationCaspi, Amir; Barthelemy, M.; Bussy-Virat, C. D. ; Cohen, I. J.; DeForest, C. E.; Jackson, D. R.; Vourlidas, A.; Nieves-Chinchilla, T. (2022). "Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations." Space Weather 20(2): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/171520
dc.description.abstractRecent advances in miniaturization and commercial availability of critical satellite subsystems and detector technology have made small satellites (SmallSats, including CubeSats) an attractive, low- cost potential solution for space weather research and operational needs. Motivated by the first International Workshop on SmallSats for Space Weather Research and Forecasting, held in Washington, DC on 1- 4 August 2017, we discuss the need for advanced space weather measurement capabilities, driven by analyses from the World Meteorological Organization (WMO), and how SmallSats can efficiently fill these measurement gaps. We present some current, recent missions and proposed/upcoming mission concepts using SmallSats that enhance space weather research and provide prototyping pathways for future operational applications; how they relate to the WMO requirements; and what challenges remain to be overcome to meet the WMO goals and operational needs in the future. With additional investment from cognizant funding agencies worldwide, SmallSats- including standalone missions and constellations- could significantly enhance space weather research and, eventually, operations, by reducing costs and enabling new measurements not feasible from traditional, large, monolithic missions.Plain Language SummaryCritical technology for satellites and scientific detectors has recently been miniaturized and become commercially available. This has made small satellites (collectively called SmallSats, which includes CubeSats) attractive as low- cost solutions for research into space weather and, potentially, for future forecasting and evaluation of space weather hazards. The first International Workshop on SmallSats for Space Weather Research and Forecasting was held in Washington, DC on 1- 4 August 2017. Motivated by this workshop and guided by analyses from the World Meteorological Organization (WMO), we discuss how and why SmallSats can provide advanced measurement capabilities to fill gaps in space weather knowledge. We present some current and upcoming space mission concepts that use SmallSats to make measurements relevant to space weather and provide development pathways for future missions that can fill operational space weather forecasting/monitoring needs. We describe how these missions relate to WMO guidance and what challenges must be overcome to achieve future measurement goals for operational applications. If appropriate technology and infrastructure investments are made by relevant government agencies, SmallSats- including single- satellite missions and multi- satellite constellations- could significantly lower costs and enable new measurements to enhance space weather research and, eventually, forecasting/monitoring operations.Key PointsMiniaturization of satellite technologies make SmallSats viable, low- cost platforms for space weather research and operational prototypingCurrent missions and proposed concepts show how SmallSats can address relevant space weather measurement requirementsSuggested paths forward for future implementations using lessons learned from these missions are provided
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Cham
dc.subject.otherspace weather
dc.subject.otherSmallSats
dc.subject.otherCubeSats
dc.subject.otherR2O
dc.subject.otherspwx
dc.subject.othermission concepts
dc.titleSmall Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171520/1/swe21233_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171520/2/swe21233.pdf
dc.identifier.doi10.1029/2020SW002554
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceMoore, C. S., Caspi, A., Woods, T. N., Chamberlin, P. C., Dennis, B. R., Jones, A. R., et al. ( 2018 ). The instruments and capabilities of the Miniature X- Ray Solar Spectrometer (MinXSS) CubeSats. Solar Physics, 293 ( 2 ), 21. https://doi.org/10.1007/s11207-018-1243-3
dc.identifier.citedreferenceLiewer, P. C., Klesh, A. T., Lo, M. W., Murphy, N., Staehle, R. L., Angelopoulos, A., et al. ( 2014 ). A fractionated space weather base at L 5 using CubeSats and solar sails. In M. Macdonald (Ed.), Advances in Solar Sailing (pp. 269 - 288 ). Springer Praxis. https://doi.org/10.1007/978-3-642-34907-2_19
dc.identifier.citedreferenceLo, M. W., Llanos, P. J., & Hintz, G. R. ( 2010 ). An L 5 mission to observe the Sun and space weather, Part I. In Proceedings of the AAS/AIAA Space Flight Mechanics Meeting. AAS 10- 121. https://doi.org/10.13140/2.1.5166.0162
dc.identifier.citedreferenceLugaz, N., Farrugia, C. J., Winslow, R. M., Al- Haddad, N., Galvin, A. B., Nieves- Chinchilla, T., et al. ( 2018 ). On the spatial coherence of magnetic ejecta: Measurements of coronal mass ejections by multiple spacecraft longitudinally separated by 0.01 AU. The Astrophysical Journal, 864 ( 1 ), L7. https://doi.org/10.3847/2041-8213/aad9f4
dc.identifier.citedreferenceMarshall, R. A., Xu, W., Woods, T., Cully, C., Jaynes, A., Randall, C., et al. ( 2020 ). The AEPEX mission: Imaging energetic particle precipitation in the atmosphere through its bremsstrahlung X- ray signatures. Advances in Space Research, 66 ( 1 ), 66 - 82. https://doi.org/10.1016/j.asr.2020.03.003
dc.identifier.citedreferenceMartineau, R. J., Pratt, J., & Swenson, C. ( 2015 ). The auroral spatial structures probe: Magnetic and electric field measurements during an active aurora at fine spatial and temporal scales. Paper presented at AGU Fall Meeting 2015, Abstract #SA31F- 2384, San Francisco, CA.
dc.identifier.citedreferenceMason, J. P., Baumgart, M., Rogler, B., Downs, C., Williams, M., Woods, T. N., et al. ( 2017 ). MinXSS- 1 CubeSat on- orbit pointing and power performance: The first flight of the Blue Canyon Technologies XACT 3- axis attitude determination and control system. Journal of Small Satellites, 6 ( 3 ), 651 - 662.
dc.identifier.citedreferenceMason, J. P., Chamberlin, P. C., Seaton, D., Burkepile, J., Colaninno, R., Dissauer, K., et al. ( 2021 ). SunCET: The Sun coronal ejection tracker concept. Journal of Space Weather and Space Climate, 11, 20. https://doi.org/10.1051/swsc/2021004
dc.identifier.citedreferenceMason, J. P., Woods, T. N., Caspi, A., Chamberlin, P. C., Moore, C., Jones, A., et al. ( 2016 ). Miniature X- ray solar spectrometer: A science- oriented, University 3U CubeSat. Journal of Spacecraft and Rockets, 53 ( 2 ), 328 - 339. https://doi.org/10.2514/1.A33351
dc.identifier.citedreferenceMason, J. P., Woods, T. N., Chamberlin, P. C., Jones, A., Kohnert, R., Schwab, B., et al. ( 2020 ). MinXSS- 2 CubeSat mission overview: Improvements from the successful MinXSS- 1 mission. Advances in Space Research, 66 ( 1 ), 3 - 9. https://doi.org/10.1016/j.asr.2019.02.011
dc.identifier.citedreferenceMasutti, D., Denis, A., Wicks, R., Thoemel, J., Kataria, D., Smith, A., & Muylaert, J. ( 2018 ). The QB50 mission for the investigation of the mid- lower thermosphere: Preliminary results and lessons learned. Paper presented at 15th Annual International Planetary Probe Workshop (IPPW- 2018) Short Course, Boulder, CO.
dc.identifier.citedreferenceMillan, R. M., Sotirelis, T., Sample, J. G., Woodger, L. A., Griffith, B. A. A., Nikoukar, R., et al. ( 2020 ). REAL: A CubeSat mission to study energetic electron precipitation into Earth’s atmosphere. Paper presented at AGU Fall Meeting 2020, Abstract #SM009- 11.
dc.identifier.citedreferenceMooney, M. K., Marsh, M. S., Forsyth, C., Sharpe, M., Hughes, T., Bingham, S., et al. ( 2021 ). Evaluating auroral forecasts against satellite observations. Space Weather, 19 ( 8 ), e02688. https://doi.org/10.1029/2020SW002688
dc.identifier.citedreferenceMoretto, T., & Robinson, R. M. ( 2008 ). Small satellites for space weather research. Space Weather, 6 ( 5 ), 05007. https://doi.org/10.1029/2008SW000392
dc.identifier.citedreferenceNational Academies of Sciences, Engineering, and Medicine. ( 2016 ). Achieving science with CubeSats: Thinking inside the box. The National Academies Press. https://doi.org/10.17226/23503
dc.identifier.citedreferenceNational Research Council. ( 2013 ). Solar and space physics: A science for a technological society. The National Academies Press. https://doi.org/10.17226/13060
dc.identifier.citedreferenceNational Science and Technology Council. ( 2015a ). National space weather strategy. Executive Office of the President (EOP). Retrieved from https://www.sworm.gov/publications/2015/nsws_final_20151028.pdf
dc.identifier.citedreferenceNational Science and Technology Council. ( 2015b ). National space weather action plan. Executive Office of the President (EOP). Retrieved from https://www.sworm.gov/publications/2015/swap_final__20151028.pdf
dc.identifier.citedreferenceNational Science and Technology Council. ( 2019 ). National space weather strategy and action plan. Executive Office of the President (EOP). Retrieved from https://www.whitehouse.gov/wp-content/uploads/2019/03/National-Space-Weather-Strategy-and-Action-Plan-2019.pdf
dc.identifier.citedreferenceNieves- Chinchilla, T., Lal, B., Robinson, R., Caspi, A., Jackson, D. R., Moretto Jørgensen, T., & Spann, J. ( 2020 ). International Coordination and support for smallsat- enabled space weather activities. Space Weather, 18 ( 12 ), e02568. https://doi.org/10.1029/2020SW002568
dc.identifier.citedreferenceRodgers, E. M., Bailey, S. M., Warren, H. P., Woods, T. N., & Eparvier, F. G. ( 2006 ). Soft X- ray irradiances during solar flares observed by TIMED- SEE. Journal of Geophysical Research, 111 ( A10 ), A10S13. https://doi.org/10.1029/2005JA011505
dc.identifier.citedreferenceRuf, C., Unwin, M., Dickinson, J., Rose, R., Rose, D., Vincent, M., & Lyons, A. ( 2013 ). CYGNSS: Enabling the future of hurricane prediction [remote sensing satellites]. IEEE Geoscience and Remote Sensing Magazine, 1 ( 2 ), 52 - 67. https://doi.org/10.1109/MGRS.2013.2260911
dc.identifier.citedreferenceSojka, J. J., Jensen, J., David, M., Schunk, R. W., Woods, T., & Eparvier, F. ( 2013 ). Modeling the ionospheric E and F1 regions: Using SDO- EVE observations as the solar irradiance driver. Journal of Geophysical Research: Space Physics, 118 ( 8 ), 5379 - 5391. https://doi.org/10.1002/jgra.50480
dc.identifier.citedreferenceSojka, J. J., Jensen, J. B., David, M., Schunk, R. W., Woods, T., Eparvier, F., et al. ( 2014 ). Ionospheric model- observation comparisons: E layer at Arecibo Incorporation of SDO- EVE solar irradiances. Journal of Geophysical Research: Space Physics, 119 ( 5 ), 3844 - 3856. https://doi.org/10.1002/2013JA019528
dc.identifier.citedreferenceSpence, H. E., Caspi, A., Bahcivan, H., Nieves- Chinchilla, J., Crowley, G., Cutler, J., et al. ( 2022 ). Recent achievements and lessons learned from small satellite missions for space weather- oriented research. Space Weather. submitted (this issue).
dc.identifier.citedreferenceThoemel, J., Singarayar, F., Scholz, T., Masutti, D., Testani, P., Asma, C., et al. ( 2014 ). Status of the QB50 CubeSat constellation mission. In Proceedings of the 65th International Astronautical Congress (IAC- 2014). IAC- 14.B4.2.11. Retrieved from https://www.qb50.eu/index.php/tech-docs/category/26-ref.html
dc.identifier.citedreferenceVerkhoglyadova, O. P., Bussy- Virat, C. D., Caspi, A., Jackson, D. R., Kalegaev, V., Klenzing, J., et al. ( 2021 ). Addressing gaps in space weather operations and understanding with small satellites. Space Weather, 19 ( 3 ), e02566. https://doi.org/10.1029/2020SW002566
dc.identifier.citedreferenceVourlidas, A. ( 2015 ). Mission to the Sun- Earth L 5 lagrangian point: An optimal platform for space weather research. Space Weather, 13 ( 4 ), 197 - 201. https://doi.org/10.1002/2015SW001173
dc.identifier.citedreferenceWoods, T. N., Caspi, A., Chamberlin, P. C., Jones, A., Kohnert, R., Mason, J. P., et al. ( 2017 ). New solar irradiance measurements from the miniature X- ray solar spectrometer CubeSat. The Astrophysical Journal, 835 ( 2 ), 122. https://doi.org/10.3847/1538-4357/835/2/122
dc.identifier.citedreferenceZheng, Y., Lynch, K. A., Boehm, M., Goldstein, R., Javadi, H., Schuck, P., et al. ( 2003 ). Multipoint measurements of field- aligned current density in the auroral zone. Journal of Geophysical Research, 108 ( A5 ), 1217. https://doi.org/10.1029/2002JA009450
dc.identifier.citedreferenceAngelopoulos, V., Tsai, E., Bingley, L., Shaffer, C., Turner, D. L., Runov, A., et al. ( 2020 ). The ELFIN Mission. Space Science Reviews, 216, 103. https://doi.org/10.1007/s11214-020-00721-7
dc.identifier.citedreferenceAruliah, A. L., Foerster, M., Doornbos, E., Hood, R., & Johnson, D. ( 2017 ). Comparing high- latitude thermospheric winds from FPI and CHAMP accelerometer measurements. Paper presented at AGU Fall Meeting 2017, Abstract #SA41A- 2613, New Orleans, LA.
dc.identifier.citedreferenceBacon, A., & Olivier, B. ( 2017 ). Skimsats: Bringing down the cost of Earth Observation. In S. Hatton (Ed.), Proceedings of the 12th Reinventing Space Conference (pp. 1 - 7 ). Springer Cham. https://doi.org/10.1007/978-3-319-34024-1_1
dc.identifier.citedreferenceBaker, J., Colley, C. N., Essmiller, J. C., Klesh, A. T., Krajewski, J. A., & Sternberg, D. C. ( 2019 ). MarCO: The first interplanetary CubeSats. Paper presented at EPSC- DPS Joint Meeting 2019, Abstract #EPSC- DPS2019- 2009.
dc.identifier.citedreferenceBarthelemy, M., Kalegaev, V., Vialatte, A., Le Coarer, E., Kerstel, E., Basaev, A., et al. ( 2018 ). AMICal Sat and ATISE: Two space missions for auroral monitoring. Journal of Space Weather and Space Climate, 8, A44. https://doi.org/10.1051/swsc/2018035
dc.identifier.citedreferenceBarthelemy, M., Robert, E., Kalegaev, V., Grennerat, V., Sequies, T., Bourdarot, G., et al. ( 2022 ). AMICal Sat: A sparse RGB imager on board a 2U cubesat to study the aurora. IEEE Journal of Miniaturization for Air and Space Systems. submitted (revised). https://arxiv.org/abs/2201.06973
dc.identifier.citedreferenceBedington, R., Kataria, D. O., & Smith, A. ( 2014 ). A highly miniaturized electron and ion energy spectrometer prototype for the rapid analysis of space plasmas. Review of Scientific Instruments, 85 ( 2 ), 023305. https://doi.org/10.1063/1.4865842
dc.identifier.citedreferenceBlum, L., Kanekal, S., Espley, J., Jaynes, A., Gabrielse, C., Sheppard, D., et al. ( 2021 ). GTOSat: A next- generation CubeSat to study Earth’s radiation belts. Paper presented at 43rd COSPAR Scientific Assembly, Abstract #2274.
dc.identifier.citedreferenceBonadonna, M., Lanzerotti, L., & Stailey, J. ( 2017 ). The National Space Weather Program: Two decades of interagency partnership and accomplishments. Space Weather, 15 ( 1 ), 14 - 25. https://doi.org/10.1002/2016SW001523
dc.identifier.citedreferenceBussy- Virat, C. D., Ruf, C. S., & Ridley, A. J. ( 2018 ). Relationship between temporal and spatial resolution for a constellation of GNSS- R satellites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 ( 1 ), 16 - 25. https://doi.org/10.1109/JSTARS.2018.2833426
dc.identifier.citedreferenceCaspi, A., Shih, A. Y., Warren, H., Winebarger, A. R., Woods, T. N., Cheung, C. M. M., et al. ( 2020 ). The CubeSat imaging X- ray solar spectrometer (CubIXSS). Paper presented at AGU Fall Meeting 2020, Abstract #SH048- 0007, held virtually.
dc.identifier.citedreferenceCaspi, A., Shih, A. Y., Warren, H. P., StÄ Å licki, M., & Sylwester, J. ( 2016 ). Diagnosing coronal heating processes with spectrally resolved soft X- ray measurements. White paper submitted to the Scientific Objectives Team of the Next- Generation Solar Physics Mission. Retrieved from https://arxiv.org/abs/1701.00619
dc.identifier.citedreferenceCaspi, A., Woods, T. N., & Warren, H. P. ( 2015 ). New observations of the solar 0.5- 5 keV soft X- ray spectrum. The Astrophysical Journal, 802 ( 1 ), L2. https://doi.org/10.1088/2041-8205/802/1/L2
dc.identifier.citedreferenceChartier, A. T., Jackson, D. R., & Mitchell, C. N. ( 2013 ). A comparison of the effects of initializing different thermosphere- ionosphere model fields on storm time plasma density forecasts. Journal of Geophysical Research: Space Physics, 118 ( 11 ), 7329 - 7337. https://doi.org/10.1002/2013JA019034
dc.identifier.citedreferenceCohen, I. J., Anderson, B. J., Bonnell, J. W., Lysak, R. L., Lessard, M. R., Michell, R. G., & Varney, R. H. ( 2020 ). Rocket Investigation of Current Closure in the Ionosphere (RICCI): A novel application of CubeSats from a sounding rocket platform. Advances in Space Research, 66, 98 - 106. https://doi.org/10.1016/j.asr.2019.04.036
dc.identifier.citedreferenceDeForest, C. E., de Koning, C. A., & Elliott, H. A. ( 2017 ). 3D polarized imaging of coronal mass ejections: Chirality of a CME. The Astrophysical Journal, 850 ( 2 ), 130. https://doi.org/10.3847/1538-4357/aa94ca
dc.identifier.citedreferenceDeForest, C. E., Howard, T. A., & Tappin, S. J. ( 2013 ). The Thomson Surface. II. Polarization. The Astrophysical Journal, 765 ( 1 ), 44. https://doi.org/10.1088/0004-637X/765/1/44
dc.identifier.citedreferenceDeForest, C. E., Howard, T. A., Webb, D. F., & Davies, J. A. ( 2016 ). The utility of polarized heliospheric imaging for space weather monitoring. Space Weather, 14 ( 1 ), 32 - 49. https://doi.org/10.1002/2015SW001286
dc.identifier.citedreferenceDiard, T., de la Barrière, F., Ferrec, Y., Guérineau, N., Rommeluère, S., Le Coarer, E., & Martin, G. ( 2016 ). Compact high- resolution micro- spectrometer on chip: Spectral calibration and first spectrum. In Micro- and Nanotechnology Sensors, Systems, and Applications VIII, Proceedings of SPIE. 9836, 98362W. https://doi.org/10.1117/12.2223692
dc.identifier.citedreferenceDunlop, M. W., Balogh, A., Glassmeier, K.- H., & Robert, P. ( 2002 ). Four- point cluster application of magnetic field analysis tools: The Curlometer. Journal of Geophysical Research, 107 ( A11 ), 1384. https://doi.org/10.1029/2001JA005088
dc.identifier.citedreferenceEastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L., Codrescu, M., et al. ( 2017 ). The Global- Scale Observations of the Limb and Disk (GOLD) Mission. Space Science Reviews, 212 ( 1- 2 ), 383 - 408. https://doi.org/10.1007/s11214-017-0392-2
dc.identifier.citedreferenceGibson, S. E., Vourlidas, A., Hassler, D. M., Rachmeler, L. A., Thompson, M. J., Newmark, J., et al. ( 2018 ). Solar physics from unconventional viewpoints. Frontiers in Astronomy and Space Sciences, 5, 32. https://doi.org/10.3389/fspas.2018.00032
dc.identifier.citedreferenceHoward, T. A., Tappin, S. J., Odstrcil, D., & DeForest, C. E. ( 2013 ). The Thomson surface. III. Tracking features in 3D. The Astrophysical Journal, 765 ( 1 ), 45. https://doi.org/10.1088/0004-637X/765/1/45
dc.identifier.citedreferenceImmel, T. J., England, S. L., Mende, S. B., Heelis, R. A., Englert, C. R., Edelstein, J., et al. ( 2018 ). The Ionospheric Connection Explorer mission: Mission goals and design. Space Science Reviews, 214 ( 1 ), 13. https://doi.org/10.1007/s11214-017-0449-2
dc.identifier.citedreferenceKnipp, D. J., & Gannon, J. L. ( 2019 ). The 2019 national space weather strategy and action plan and beyond. Space Weather, 17 ( 6 ), 794 - 795. https://doi.org/10.1029/2019SW002254
dc.identifier.citedreferenceKorendyke, C. M., Chua, D. H., Howard, R. A., Plunkett, S. P., Socker, D. G., Thernisien, A. F. R., et al. ( 2015 ). MiniCOR: A miniature coronagraph for interplanetary cubesat. In Proceedings of the AIAA/USU Conference on Small Satellites. Science/Mission Payloads, SSC15- XII- 6. Retrieved from http://digitalcommons.usu.edu/smallsat/2015/all2015/82
dc.identifier.citedreferenceLario, D., Aran, A., Gómez- Herrero, R., Dresing, N., Heber, B., Ho, G. C., et al. ( 2013 ). Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. The Astrophysical Journal, 767 ( 1 ), 41. https://doi.org/10.1088/0004-637X/767/1/41
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.