Show simple item record

High‐Performance Transparent Broadband Microwave Absorbers

dc.contributor.authorWang, Heyan
dc.contributor.authorZhang, Yilei
dc.contributor.authorJi, Chengang
dc.contributor.authorZhang, Cheng
dc.contributor.authorLu, Zhengang
dc.contributor.authorLiu, Yunfei
dc.contributor.authorCao, Zhibo
dc.contributor.authorYuan, Jing
dc.contributor.authorTan, Jiubin
dc.contributor.authorGuo, L. Jay
dc.date.accessioned2022-02-07T20:22:19Z
dc.date.available2023-03-07 15:22:17en
dc.date.available2022-02-07T20:22:19Z
dc.date.issued2022-02
dc.identifier.citationWang, Heyan; Zhang, Yilei; Ji, Chengang; Zhang, Cheng; Lu, Zhengang; Liu, Yunfei; Cao, Zhibo; Yuan, Jing; Tan, Jiubin; Guo, L. Jay (2022). "High‐Performance Transparent Broadband Microwave Absorbers." Advanced Materials Interfaces 9(4): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/171526
dc.description.abstractThe ability to absorb a broad frequency range of microwaves is essential for improving the performance of various electromagnetic interference shielding applications. However, the achievement of broadband microwave absorption with high optical transparency remains a long‐standing and unsolved challenge. Here, a simple and powerful method for high‐efficiency broadband microwave absorption is presented by introducing strongly overlapped multi‐cavity resonances, which is supported by multi‐layer structures comprising of alternating graphene/silica pairs and ultrathin silver films. A design guideline for achieving broadband absorption in multi‐layer structures is proposed and, more importantly, the complementary effect of different graphene layers on the microwave absorption mechanism is revealed for the first time, providing a new analytical perspective. Experiments show that the absorption efficiency of the proposed multi‐layer structures is near unity (≈100%) at resonant peaks with absorption bandwidths (≥50%) up to ≈30 GHz within the measured range of 32 GHz. In addition, the multi‐layer structures exhibit highly visible transmittance ranging from ≈85.8% to 68.0%. The proposed general theoretical framework and physical insights in combination with experimental demonstrations lay the foundation for designing a new type of transparent broadband microwave absorber.A multi‐layered structure consisting of graphene/silica units and ultrathin Ag films for transparent broadband microwave absorbers is demonstrated. A design guideline for achieving broadband absorption in multi‐layer structures is proposed and, more importantly, the complementary effect of different graphene layers on the microwave absorption mechanism is revealed, providing a new analytical perspective.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroptical transparency
dc.subject.otherultrathin silver films
dc.subject.otherbroadband absorption
dc.subject.othergraphene
dc.subject.otherperfect microwave absorber
dc.titleHigh‐Performance Transparent Broadband Microwave Absorbers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171526/1/admi202101714_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171526/2/admi202101714-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171526/3/admi202101714.pdf
dc.identifier.doi10.1002/admi.202101714
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceH. Sheokand, G. Singh, S. Ghosh, J. Ramkumar, S. Ramakrishna, K. Srivastava, IEEE Antennas Wireless Propag. Lett. 2019, 18, 113.
dc.identifier.citedreferenceH. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang, Y. Chen, Adv. Opt. Mater. 2019, 7, 1801318.
dc.identifier.citedreferenceB. Wu, H. Tuncer, A. Katsounaros, W. Wu, M. Cole, K. Ying, L. Zhang, W. Milne, Y. Hao, Carbon 2014, 77, 814.
dc.identifier.citedreferenceK. Zhang, J. Zhang, Z. Hou, S. Bi, Q. Zhao, Carbon 2019, 141, 608.
dc.identifier.citedreferenceD. Yi, X. Wei, Y. Xu, IEEE Trans. Microwave Theory Tech. 2017, 65, 2819.
dc.identifier.citedreferenceY. Bai, B. Zhong, Y. Yu, M. Wang, J. Zhang, B. Zhang, K. Gao, A. Liang, C. Wang, J. Zhang, npj 2D Mater. Appl. 2019, 3, 32.
dc.identifier.citedreferenceZ. Lu, L. Ma, J. Tan, H. Wang, X. Ding, Nanoscale 2016, 8, 16684.
dc.identifier.citedreferenceK. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, Y. Svirko, Sci. Rep. 2014, 4, 7191.
dc.identifier.citedreferenceB. Wu, H. Tuncer, M. Naeem, B. Yang, M. Cole, W. Milne, Y. Hao, Sci. Rep. 2014, 4, 4130.
dc.identifier.citedreferenceY. Chang, C. Liu, C. Liu, S. Zhang, S. Marder, E. Narimanov, Z. Zhong, T. Norris, Nat. Commun. 2016, 7, 10568.
dc.identifier.citedreferenceI. Iorsh, I. Mukhin, I. Shadrivov, P. Belov, Y. Kivshar, Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 075416.
dc.identifier.citedreferenceM. Othman, C. Guclu, F. Capolino, Opt. Express 2013, 21, 7614.
dc.identifier.citedreferenceL. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 2021, 1, 413.
dc.identifier.citedreferenceF. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu, J. Gu, Mater. Today Phys. 2021, 21, 100512.
dc.identifier.citedreferenceL. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 2020, 52, 119.
dc.identifier.citedreferenceH. Y. Wang, C. G. Ji, C. Zhang, Y. L. Zhang, Z. Zhang, Z. G. Lu, J. B. Tan, L. J. Guo, ACS Appl. Mater. Interfaces 2019, 11, 11782.
dc.identifier.citedreferenceC. Zhang, Q. Y. Huang, Q. Y. Cui, C. G. Ji, Z. Zhang, X. Chen, T. George, S. L. Zhao, L. J. Guo, ACS Appl. Mater. Interfaces 2019, 11, 27216.
dc.identifier.citedreferenceC. Zhang, C. Ji, Y. B. Park, L. J. Guo, Adv. Opt. Mater. 2020, 9, 2001298.
dc.identifier.citedreferenceA. Siokou, F. Ravani, O. F. S. Karakalos, M. Kalbac, C. Galiotis, Appl. Surf. Sci. 2011, 257, 9785.
dc.identifier.citedreferenceR. Stine, J. W. Ciszek, D. E. Barlow, W. K. Lee, J. T. Robinson, P. E. Sheehan, Langmuir 2012, 28, 7957.
dc.identifier.citedreferenceX. Gao, S. Wang, J. Li, Y. Zheng, R. Zhang, P. Zhou, Y. Yang, L. Chen, Thin Solid Films 2004, 455, 438.
dc.identifier.citedreferenceZ. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, H. Duan, Adv. Opt. Mater. 2017, 5, 1700029.
dc.identifier.citedreferenceZ. Li, E. Palacios, S. Butun, H. Kocer, K. Aydin, Sci. Rep. 2015, 5, 15137.
dc.identifier.citedreferenceL. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, S. Fan, Light: Sci. Appl. 2016, 5, e16052.
dc.identifier.citedreferenceL. Jia, D. Yan, X. Liu, R. Ma, H. Wu, Z. Li, ACS Appl. Mater. Interfaces 2018, 10, 11941.
dc.identifier.citedreferenceY. G. Bi, Y. F. Liu, X. L. Zhang, D. Yin, W. Q. Wang, J. Feng, H. B. Sun, Adv. Opt. Mater. 2019, 7, 1800778.
dc.identifier.citedreferenceX. Liang, J. Lu, T. Zhao, X. Yu, Q. Jiang, Y. Hu, P. Zhu, R. Sun, C. P. Wong, Adv. Mater. Interfaces 2019, 6, 1801635.
dc.identifier.citedreferenceJ. Lu, Y. Zhang, Y. Tao, B. Wang, W. Cheng, G. Jie, L. Song, Y. Hu, J. Colloid Interface Sci. 2020, 588, 164.
dc.identifier.citedreferenceS. K. Guo, J. Deng, J. Zhou, Y. Yu, Y. Bu, T. Zhu, X. Ren, Z. Li, W. Lu, X. Chen, Opt. Express 2021, 29, 9269.
dc.identifier.citedreferenceY. Yu, J. Zhou, Q. Cai, Z. Chu, J. Deng, W. Lu, Z. Li, X. Chen, Opt. Lett. 2021, 46, 2236.
dc.identifier.citedreferenceS. Guo, D. Zhang, J. Zhou, J. Deng, Y. Yu, J. Deng, Q. Cai, Z. Li, W. Lu, X. Chen, Carbon 2020, 170, 49.
dc.identifier.citedreferenceS. Hong, K. Kim, T. Kim, J. Kim, S. Park, J. Kim, B. Cho, Nanotechnology 2012, 23, 455704.
dc.identifier.citedreferenceS. Kim, J. Oh, M. Kim, W. Jang, M. Wang, Y. Kim, H. Seo, Y. Kim, J. Lee, Y. Lee, J. Nam, ACS Appl. Mater. Interfaces 2014, 6, 17647.
dc.identifier.citedreferenceD. Yi, X. C. Wei, Y. Xu, IEEE Trans. Nanotechnol. 2017, 16, 484.
dc.identifier.citedreferenceR. Deng, K. Zhang, M. Li, L. Song, T. Zhang, Mater. Des. 2019, 162, 119.
dc.identifier.citedreferenceS. Lai, Y. Wu, X. Zhu, W. Gu, W. Wu, IEEE Photonics J. 2017, 9, 1.
dc.identifier.citedreferenceI. Lee, S. Yoon, J. Lee, I. Hong, Electron. Lett. 2016, 52, 555.
dc.identifier.citedreferenceC. Zhang, Q. Cheng, J. Yang, J. Zhao, T. Cui, Appl. Phys. Lett. 2017, 110, 722.
dc.identifier.citedreferenceH. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. Srivastava, J. Ramkumar, S. Ramakrishna, J. Appl. Phys. 2017, 122, 105105.
dc.identifier.citedreferenceJ. Zhao, C. Zhang, Q. Cheng, J. Yang, T. Cui, Appl. Phys. Lett. 2018, 112, 073504.
dc.identifier.citedreferenceK. Chen, L. Cui, Y. J. Feng, J. Zhao, T. Jiang, B. Zhu, Opt. Express 2017, 25, 5571.
dc.identifier.citedreferenceD. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, J. Guan, Adv. Opt. Mater. 2017, 5, 1700109.
dc.identifier.citedreferenceH. Xiong, J. Hong, C. Luo, L. Zhong, J. Appl. Phys. 2013, 114, 064109.
dc.identifier.citedreferenceF. Ding, Y. Cui, X. Ge, Y. Jin, S. L. He, Appl. Phys. Lett. 2012, 100, 103506.
dc.identifier.citedreferenceT. Jang, H. Youn, Y. J. Shin, L. J. Guo, ACS Photonics 2014, 1, 279.
dc.identifier.citedreferenceP. Min, Z. Song, L. Yang, B. Dai, J. Zhu, Opt. Express 2020, 28, 19518.
dc.identifier.citedreferenceQ. Zhou, X. Yin, F. Ye, R. Mo, Z. Tang, X. Fan, L. Cheng, L. Zhang, Appl. Phys. A: Mater. Sci. Process. 2019, 125, 131.
dc.identifier.citedreferenceY. Wu, J. Wang, S. Lai, X. Zhu, W. Gu, AIP Adv. 2019, 9, 025309.
dc.identifier.citedreferenceW. Lu, J. Wang, J. Zhang, Z. Liu, H. Chen, W. Song, Z. Jiang, Carbon 2019, 152, 70.
dc.identifier.citedreferenceH. Chen, W. Lu, Z. Liu, J. Zhang, A. Zhang, B. Wu, IEEE Trans. Microwave Theory Tech. 2018, 66, 3807.
dc.identifier.citedreferenceO. Balci, E. Polat, N. Kakenov, C. Kocabas, Nat. Commun. 2015, 6, 6628.
dc.identifier.citedreferenceF. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S. Hong, C. Koo, Y. Gogotsi, Science 2016, 353, 1137.
dc.identifier.citedreferenceP. Kumar, Adv. Mater. Interfaces 2019, 6, 1901454.
dc.identifier.citedreferenceH. Wang, Y. Zhang, C. Ji, C. Zhang, D. Liu, Z. Zhang, Z. Lu, J. Tan, L. J. Guo, Adv. Sci. 2019, 6, 1901320.
dc.identifier.citedreferenceJ. Huang, T. Wang, Y. Su, Y. Ding, C. Tu, W. Li, Adv. Mater. Interfaces 2021, 8, 2100186.
dc.identifier.citedreferenceM. Yang, Q. Wei, J. Li, Y. Wang, H. Guo, L. Gao, L. Huang, X. He, Y. Li, Y. Yuan, Adv. Mater. Interfaces 2020, 7, 1901815.
dc.identifier.citedreferenceT. Almoneef, O. Ramahi, Appl. Phys. Lett. 2015, 106, 153902.
dc.identifier.citedreferenceY. Han, Y. X. Liu, L. Han, J. Lin, P. Jin, Carbon 2017, 115, 34.
dc.identifier.citedreferenceZ. Lu, L. Ma, J. Tan, H. Wang, X. Ding, 2D Mater. 2017, 4, 025021.
dc.identifier.citedreferenceR. Deng, K. Zhan, M. Li, L. Song, T. Zhang, Mater. Des. 2018, 162, 119.
dc.identifier.citedreferenceD. Yoo, D. Won, W. Cho, J. Lim, J. Kim, Adv. Mater. Technol. 2021, 2100358.
dc.identifier.citedreferenceS. Lai, Y. Wu, X. Zhu, W. Gu, W. Wen, IEEE Photonics J. 2017, 9, 1.
dc.identifier.citedreferenceM. Grande, G. Bianco, M. Vincenti, D. Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, A. D’Orazio, Opt. Express 2016, 24, 22788.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.