Show simple item record

The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands

dc.contributor.authorJing, Xin
dc.contributor.authorPrager, Case M.
dc.contributor.authorChen, Litong
dc.contributor.authorChu, Haiyan
dc.contributor.authorGotelli, Nicholas J.
dc.contributor.authorHe, Jin-Sheng
dc.contributor.authorShi, Yu
dc.contributor.authorYang, Teng
dc.contributor.authorZhu, Biao
dc.contributor.authorClassen, Aimée T.
dc.contributor.authorSanders, Nathan J.
dc.date.accessioned2022-02-07T20:22:29Z
dc.date.available2023-04-07 15:22:24en
dc.date.available2022-02-07T20:22:29Z
dc.date.issued2022-03
dc.identifier.citationJing, Xin; Prager, Case M.; Chen, Litong; Chu, Haiyan; Gotelli, Nicholas J.; He, Jin-Sheng ; Shi, Yu; Yang, Teng; Zhu, Biao; Classen, Aimée T. ; Sanders, Nathan J. (2022). "The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands." Global Ecology and Biogeography (3): 486-500.
dc.identifier.issn1466-822X
dc.identifier.issn1466-8238
dc.identifier.urihttps://hdl.handle.net/2027.42/171529
dc.description.abstractAimAn important research question in ecology is how climate and the biodiversity of aboveground plants and belowground microbiomes affect ecosystem functions such as nutrient pools. However, little is studied on the concurrent role of above- and belowground species composition in shaping the spatial distribution patterns of ecosystem functions across environmental gradients. Here, we investigated the relationships between the taxonomic composition of plants, soil bacteria and soil fungi and spatial turnover in nutrient pools, and assessed how species composition- nutrient pool relationships were mediated by contemporary climatic conditions.LocationQinghai- Tibetan Plateau.Time periodCurrent.Major taxa studiedPlants, soil bacteria and soil fungi.MethodsWe surveyed plant assemblages, sampled the taxonomic composition of soil bacteria and soil fungi, and measured plant- and soil- mediated nutrient pools at 60 alpine grasslands on the Qinghai- Tibetan Plateau. Using Mantel tests, structural equation models and general linear models, we investigated the relative importance of the taxonomic composition of plant, soil bacterial, and soil fungal communities on the spatial turnover of alpine grassland nutrient pools.ResultsWe found that the taxonomic composition of plant, soil bacterial, and soil fungal communities was associated with local climate. However, the effects of local climate on the spatial turnover of plant- and soil- mediated nutrient pools were mainly indirect and mediated through plant and soil bacterial species composition, but not through soil fungal species composition. We further found that the replacement component of soil bacterial β- diversity and the richness difference of plant β- diversity were the direct predictors of nutrient pools in the alpine grasslands.Main conclusionsThese results highlight that belowground bacterial composition together with aboveground plant species composition are related to spatial turnover in nutrient pools, perhaps even driving it. Conserving above- and belowground biodiversity may therefore safeguard against the impacts of local climate on the functions of climate- sensitive alpine grasslands.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.otherclimate change
dc.subject.otherdispersal limitation
dc.subject.otherecosystem functions
dc.subject.otherenvironmental selection
dc.subject.othernaturally assembled communities
dc.subject.otheraboveground- belowground linkages
dc.subject.otherspatial turnover
dc.subject.otherbeta diversity
dc.titleThe influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171529/1/geb13442_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171529/2/geb13442-sup-0002-FigS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171529/3/geb13442-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171529/4/geb13442-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171529/5/geb13442.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171529/6/geb13442-sup-0004-FigS4.pdf
dc.identifier.doi10.1111/geb.13442
dc.identifier.sourceGlobal Ecology and Biogeography
dc.identifier.citedreferenceRamirez, K. S., Knight, C. G., de Hollander, M., Brearley, F. Q., Constantinides, B., Cotton, A., Creer, S. I., Crowther, T. W., Davison, J., Delgado- Baquerizo, M., Dorrepaal, E., Elliott, D. R., Fox, G., Griffiths, R. I., Hale, C., Hartman, K., Houlden, A., Jones, D. L., Krab, E. J., - ¦ de Vries, F. T. ( 2018 ). Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 3 ( 2 ), 189 - 196. https://doi.org/10.1038/s41564- 017- 0062- x
dc.identifier.citedreferenceMyers, J. A., Chase, J. M., Jimenez, I., Jorgensen, P. M., Araujo- Murakami, A., Paniagua- Zambrana, N., & Seidel, R. ( 2013 ). Beta- diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16 ( 2 ), 151 - 157. https://doi.org/10.1111/ele.12021
dc.identifier.citedreferenceNaeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., & Woodfin, R. M. ( 1994 ). Declining biodiversity can alter the performance of ecosystems. Nature, 368, 734 - 737. https://doi.org/10.1038/368734a0
dc.identifier.citedreferenceNottingham, A. T., Fierer, N., Turner, B. L., Whitaker, J., Ostle, N. J., McNamara, N. P., Bardgett, R. D., Leff, J. W., Salinas, N., Silman, M. R., Kruuk, L. E. B., & Meir, P. ( 2018 ). Microbes follow Humboldt: Temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology, 99 ( 11 ), 2455 - 2466. https://doi.org/10.1002/ecy.2482
dc.identifier.citedreferencePasari, J. R., Levi, T., Zavaleta, E. S., & Tilman, D. ( 2013 ). Several scales of biodiversity affect ecosystem multifunctionality. Proceedings of the National Academy of Sciences USA, 100, 10219 - 10222. https://doi.org/10.1073/pnas.1220333110
dc.identifier.citedreferencePeay, K. G., Dickie, I. A., Wardle, D. A., Bellingham, P. J., & Fukami, T. ( 2013 ). Rat invasion of islands alters fungal community structure, but not wood decomposition rates. Oikos, 122 ( 2 ), 258 - 264. https://doi.org/10.1111/j.1600- 0706.2012.20813.x
dc.identifier.citedreferencePeay, K. G., Kennedy, P. G., & Talbot, J. M. ( 2016 ). Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology, 14 ( 7 ), 434 - 447. https://doi.org/10.1038/nrmicro.2016.59
dc.identifier.citedreferencePeters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig- Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., - ¦ Steffan- Dewenter, I. ( 2019 ). Climate- land- use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568 ( 7750 ), 88 - 92. https://doi.org/10.1038/s41586- 019- 1048- z
dc.identifier.citedreferencePodani, J., & Schmera, D. ( 2011 ). A new conceptual and methodological framework for exploring and explaining pattern in presence- absence data. Oikos, 120 ( 11 ), 1625 - 1638. https://doi.org/10.1111/j.1600- 0706.2011.19451.x
dc.identifier.citedreferenceProber, S. M., Leff, J. W., Bates, S. T., Borer, E. T., Firn, J., Harpole, W. S., Lind, E. M., Seabloom, E. W., Adler, P. B., Bakker, J. D., Cleland, E. E., DeCrappeo, N. M., DeLorenze, E., Hagenah, N., Hautier, Y., Hofmockel, K. S., Kirkman, K. P., Knops, J. M. H., La Pierre, K. J., - ¦ Fierer, N. ( 2015 ). Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18 ( 1 ), 85 - 95. https://doi.org/10.1111/ele.12381
dc.identifier.citedreferenceR Development Core Team. ( 2019 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R- project.org/
dc.identifier.citedreferenceRosseel, Y. ( 2012 ). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48 ( 2 ), 1 - 36. https://doi.org/10.18637/jss.v048.i02
dc.identifier.citedreferenceRousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. ( 2010 ). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4 ( 10 ), 1340 - 1351. https://doi.org/10.1038/ismej.2010.58
dc.identifier.citedreferenceScherber, C., Eisenhauer, N., Weisser, W. W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.- D., Roscher, C., Weigelt, A., Allan, E., Beà ler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L. W., Ebeling, A., Engels, C., Halle, S., Kertscher, I., - ¦ Tscharntke, T. ( 2010 ). Bottom- up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468 ( 7323 ), 553 - 556. https://doi.org/10.1038/nature09492
dc.identifier.citedreferenceSchmid, B., Balvanera, P., Cardinale, B. J., Godbold, J., Pfisterer, A. B., Raffaelli, D., Solan, M., & Srivastava, D. S. ( 2009 ). Consequences of species loss for ecosystem functioning: Meta- analyses of data from biodiversity experiments. In S. Naeem, D. E. Bunker, A. Hector, M. Loreau, & C. Perrings (Eds.), Biodiversity, ecosystem functioning, and human wellbeing: An ecological and economic perspective (pp. 14 - 29 ). Oxford University Press.
dc.identifier.citedreferenceShade, A., Dunn, R. R., Blowes, S. A., Keil, P., Bohannan, B. J. M., Herrmann, M., Küsel, K., Lennon, J. T., Sanders, N. J., Storch, D., & Chase, J. ( 2018 ). Macroecology to unite all life, large and small. Trends in Ecology and Evolution, 33 ( 10 ), 731 - 744. https://doi.org/10.1016/j.tree.2018.08.005
dc.identifier.citedreferenceShi, Y., Wang, Y., Ma, Y., Ma, W., Liang, C., Flynn, D. F. B., Schmid, B., Fang, J., & He, J.- S. ( 2013 ). Field- based observations of regional- scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences, 10, 16843 - 16878. https://doi.org/10.5194/bg- 11- 2003- 2014
dc.identifier.citedreferenceShi, X. Z., Yu, D. S., Warner, E. D., Sun, W. X., Petersen, G. W., Gong, Z. T., & Lin, H. ( 2006 ). Cross- reference system for translating between genetic soil classification of China and soil taxonomy. Soil Science Society of America Journal, 70 ( 1 ), 78 - 83. https://doi.org/10.2136/sssaj2004.0318
dc.identifier.citedreferenceSoliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M. M., Renner, S. C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., - ¦ Allan, E. ( 2016 ). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536 ( 7617 ), 456 - 459. https://doi.org/10.1038/nature19092
dc.identifier.citedreferenceTalbot, J. M., Bruns, T. D., Taylor, J. W., Smith, D. P., Branco, S., Glassman, S. I., Erlandson, S., Vilgalys, R., Liao, H.- L., Smith, M. E., & Peay, K. G. ( 2014 ). Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences USA, 111 ( 17 ), 6341 - 6346. https://doi.org/10.1073/pnas.1402584111
dc.identifier.citedreferenceThompson, P. L., Kéfi, S., Zelnik, Y. R., Dee, L. E., Wang, S., de Mazancourt, C., Loreau, M., & Gonzalez, A. ( 2021 ). Scaling up biodiversity- ecosystem functioning relationships: The role of environmental heterogeneity in space and time. Proceedings of the Royal Society B: Biological Sciences, 288 ( 1946 ), 20202779. https://doi.org/10.1098/rspb.2020.2779
dc.identifier.citedreferenceTilman, D., Isbell, F., & Cowles, J. M. ( 2014 ). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45 ( 1 ), 471 - 493. https://doi.org/10.1146/annurev- ecolsys- 120213- 091917
dc.identifier.citedreferenceTrivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. ( 2020 ). Plant- microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18 ( 11 ), 607 - 621. https://doi.org/10.1038/s41579- 020- 0412- 1
dc.identifier.citedreferenceTuomisto, H., & Ruokolainen, K. ( 2006 ). Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology, 87 ( 11 ), 2697 - 2708.
dc.identifier.citedreferencevan der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. ( 2008 ). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296 - 310. https://doi.org/10.1111/j.1461- 0248.2007.01139.x
dc.identifier.citedreferencevan der Plas, F. ( 2019 ). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews of the Cambridge Philosophical Society, 94 ( 4 ), 1220 - 1245. https://doi.org/10.1111/brv.12499
dc.identifier.citedreferenceWang, Y., Liu, H., Chung, H., Yu, L., Mi, Z., Geng, Y., Jing, X., Wang, S., Zeng, H., Cao, G., Zhao, X., & He, J.- S. ( 2014 ). Non- growing- season soil respiration is controlled by freezing and thawing processes in the summer monsoon- dominated Tibetan alpine grassland. Global Biogeochemical Cycles, 28 ( 10 ), 1081 - 1095. https://doi.org/10.1002/2013gb004760
dc.identifier.citedreferenceWardle, D. A. ( 2016 ). Do experiments exploring plant diversity- ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27 ( 3 ), 646 - 653. https://doi.org/10.1111/jvs.12399
dc.identifier.citedreferenceWheeler, B., Torchiano, M., & Torchiano, M. M. ( 2016 ). lmPerm: Permutation tests for linear models. R package version 2.1.0. https://CRAN.R- project.org/package=lmPerm
dc.identifier.citedreferenceWhittaker, R. H. ( 1972 ). Evolution and measurement of species diversity. Taxon, 21 ( 2- 3 ), 213 - 251. https://doi.org/10.2307/1218190
dc.identifier.citedreferenceWinfree, R., Reilly, J. R., Bartomeus, I., Cariveau, D. P., Williams, N. M., & Gibbs, J. ( 2018 ). Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science, 359 ( 6377 ), 791 - 793. https://doi.org/10.1126/science.aao2117
dc.identifier.citedreferenceXu, X., Wang, N., Lipson, D., Sinsabaugh, R., Schimel, J., He, L., Soudzilovskaia, N. A., & Tedersoo, L. ( 2020 ). Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecology and Biogeography, 29, 1870 - 1886. https://doi.org/10.1111/geb.13162
dc.identifier.citedreferenceYang, T., Adams, J. M., Shi, Y. U., He, J.- S., Jing, X., Chen, L., Tedersoo, L., & Chu, H. ( 2017 ). Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215 ( 2 ), 756 - 765. https://doi.org/10.1111/nph.14606
dc.identifier.citedreferenceYang, Y., Ji, C., Ma, W., Wang, S., Wang, S., Han, W., Mohammat, A., Robinson, D., & Smith, P. ( 2012 ). Significant soil acidification across northern China’s grasslands during 1980s- 2000s. Global Change Biology, 18, 2292 - 2300. https://doi.org/10.1111/j.1365- 2486.2012.02694.x
dc.identifier.citedreferenceYuan, Z., Ali, A., Ruiz- Benito, P., Jucker, T., Mori, A. S., Wang, S., Zhang, X., Li, H., Hao, Z., Wang, X., & Loreau, M. ( 2020 ). Above- and below- ground biodiversity jointly regulate temperate forest multifunctionality along a local- scale environmental gradient. Journal of Ecology, 108, 2012 - 2024. https://doi.org/10.1111/1365- 2745.13378
dc.identifier.citedreferenceZhang, R., Tian, D., Chen, H. Y. H., Seabloom, E. W., Han, G., Wang, S., Yu, G., Li, Z., Niu, S., & Schrodt, F. ( 2021 ). Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta- analysis. Global Ecology and Biogeography, 00, 1 - 13. https://doi.org/10.1111/geb.13408
dc.identifier.citedreferenceEngel, T., Blowes, S. A., McGlinn, D. J., May, F., Gotelli, N. J., McGill, B. J., & Chase, J. M. ( 2020 ). Resolving the species pool dependence of beta- diversity using coverage- based rarefaction. bioRxiv 2020.04.14.040402. https://doi.org/10.1101/2020.04.14.040402
dc.identifier.citedreferenceAllan, E., Weisser, W. W., Fischer, M., Schulze, E.- D., Weigelt, A., Roscher, C., Baade, J., Barnard, R. L., Beà ler, H., Buchmann, N., Ebeling, A., Eisenhauer, N., Engels, C., Fergus, A. J. F., Gleixner, G., Gubsch, M., Halle, S., Klein, A. M., Kertscher, I., - ¦ Schmid, B. ( 2013 ). A comparison of the strength of biodiversity effects across multiple functions. Oecologia, 173 ( 1 ), 223 - 237. https://doi.org/10.1007/s00442- 012- 2589- 0
dc.identifier.citedreferenceAnderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. ( 2011 ). Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecology Letters, 14 ( 1 ), 19 - 28. https://doi.org/10.1111/j.1461- 0248.2010.01552.x
dc.identifier.citedreferenceBarnes, A. D., Weigelt, P., Jochum, M., Ott, D., Hodapp, D., Haneda, N. F., & Brose, U. ( 2016 ). Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 ( 1694 ), 20150279. https://doi.org/10.1098/rstb.2015.0279
dc.identifier.citedreferenceBengtsson- Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez- García, M., Ebersberger, I., de Sousa, F., Amend, A. S., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., - ¦ Nilsson, R. H. ( 2013 ). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4 ( 10 ), 914 - 919. https://doi.org/10.1111/2041- 210X.12073
dc.identifier.citedreferenceBurley, H. M., Mokany, K., Ferrier, S., Laffan, S. W., Williams, K. J., & Harwood, T. D. ( 2016 ). Macroecological scale effects of biodiversity on ecosystem functions under environmental change. Ecology and Evolution, 6 ( 8 ), 2579 - 2593. https://doi.org/10.1002/ece3.2036
dc.identifier.citedreferenceCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., - ¦ Knight, R. ( 2010 ). QIIME allows analysis of high- throughput community sequencing data. Nature Methods, 7, 335 - 336. https://doi.org/10.1038/nmeth.f.303
dc.identifier.citedreferenceChen, L., Jing, X., Flynn, D. F., Shi, Y., Kühn, P., Scholten, T., & He, J.- S. ( 2017 ). Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma, 288, 166 - 174. https://doi.org/10.1016/j.geoderma.2016.11.016
dc.identifier.citedreferenceDamgaard, C. F., & Irvine, K. M. ( 2019 ). Using the beta distribution to analyse plant cover data. Journal of Ecology, 107 ( 6 ), 2747 - 2759. https://doi.org/10.1111/1365- 2745.13200
dc.identifier.citedreferenceDe Laender, F., Rohr, J. R., Ashauer, R., Baird, D. J., Berger, U., Eisenhauer, N., Grimm, V., Hommen, U., Maltby, L., Meliàn, C. J., Pomati, F., Roessink, I., Radchuk, V., & Van den Brink, P. J. ( 2016 ). Reintroducing environmental change drivers in biodiversity- ecosystem functioning research. Trends in Ecology and Evolution, 31 ( 12 ), 905 - 915. https://doi.org/10.1016/j.tree.2016.09.007
dc.identifier.citedreferenceDelgado- Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida, F., Berhe, A. A., Cutler, N. A., Gallardo, A., García- Velázquez, L., Hart, S. C., Hayes, P. E., He, J.- Z., Hseu, Z.- Y., Hu, H.- W., Kirchmair, M., Neuhauser, S., Pérez, C. A., - ¦ Singh, B. K. ( 2020 ). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4 ( 2 ), 210 - 220. https://doi.org/10.1038/s41559- 019- 1084- y
dc.identifier.citedreferenceDietz, E. J. ( 1983 ). Permutation tests for association between two distance matrices. Systematic Biology, 32 ( 1 ), 21 - 26. https://doi.org/10.1093/sysbio/32.1.21
dc.identifier.citedreferenceDong, S., Shang, Z., Gao, J., & Boone, R. B. ( 2020 ). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai- Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. https://doi.org/10.1016/j.agee.2019.106684
dc.identifier.citedreferenceDuffy, J. E., Godwin, C. M., & Cardinale, B. J. ( 2017 ). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261 - 264. https://doi.org/10.1038/nature23886
dc.identifier.citedreferenceEdgar, R. C. ( 2010 ). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460 - 2461. https://doi.org/10.1093/bioinformatics/btq461
dc.identifier.citedreferenceEdgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. ( 2011 ). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194 - 2200. https://doi.org/10.1093/bioinformatics/btr381
dc.identifier.citedreferenceEisenhauer, N. ( 2011 ). Aboveground- belowground interactions as a source of complementarity effects in biodiversity experiments. Plant and Soil, 351 ( 1- 2 ), 1 - 22. https://doi.org/10.1007/s11104- 011- 1027- 0
dc.identifier.citedreferenceEisenhauer, N., Schielzeth, H., Barnes, A. D., Barry, K. E., Bonn, A., Brose, U., Bruelheide, H., Buchmann, N., Buscot, F., Ebeling, A., Ferlian, O., Freschet, G. T., Giling, D. P., Hättenschwiler, H., Hillebrand, H., Hines, J., Isbell, F., Koller- France, E., König- Ries, B., - ¦ Jochum, M. ( 2019 ). A multitrophic perspective on biodiversity- ecosystem functioning research. In N. Eisenhauer, D. A. Bohan, & A. J. Dumbrell (Eds.), Advances in Ecological Research (Vol. 61, pp. 1 - 54 ). Elsevier. https://doi.org/10.1016/bs.aecr.2019.06.001
dc.identifier.citedreferenceFarnsworth, K. D., Albantakis, L., & Caruso, T. ( 2017 ). Unifying concepts of biological function from molecules to ecosystems. Oikos, 126 ( 10 ), 1367 - 1376. https://doi.org/10.1111/oik.04171
dc.identifier.citedreferenceFukami, T., Naeem, S., & Wardle, D. A. ( 2001 ). On similarity among local communities in biodiversity experiments. Oikos, 95 ( 2 ), 340 - 348. https://doi.org/10.1034/j.1600- 0706.2001.950216.x
dc.identifier.citedreferenceFurrer, R., Nychka, D., & Sain, S. ( 2015 ). Fields: tools for spatial data. R package version 8.4- 1. https://www.image.ucar.edu/fields/
dc.identifier.citedreferenceGarland, G., Banerjee, S., Edlinger, A., Miranda Oliveira, E., Herzog, C., Wittwer, R., Philippot, L., Maestre, F. T., & Heijden, M. G. A. ( 2021 ). A closer look at the functions behind ecosystem multifunctionality: A review. Journal of Ecology, 109 ( 2 ), 600 - 613. https://doi.org/10.1111/1365- 2745.13511
dc.identifier.citedreferenceGonzalez, A., Germain, R. M., Srivastava, D. S., Filotas, E., Dee, L. E., Gravel, D., Thompson, P. L., Isbell, F., Wang, S., Kéfi, S., Montoya, J., Zelnik, Y. R., & Loreau, M. ( 2020 ). Scaling- up biodiversity- ecosystem functioning research. Ecology Letters, 23, 757 - 776. https://doi.org/10.1111/ele.13456
dc.identifier.citedreferenceGoslee, S. C., & Urban, D. L. ( 2007 ). The ecodist package for dissimilarity- based analysis of ecological data. Journal of Statistical Software, 22 ( 7 ), 1 - 19. https://doi.org/10.18637/jss.v022.i07
dc.identifier.citedreferenceGrace, J. ( 2020 ). A ’Weight of Evidence’ approach to evaluating structural equation models. One Ecosystem, 5, e50452. https://doi.org/10.3897/oneeco.5.e50452
dc.identifier.citedreferenceGraham, E. B., Wieder, W. R., Leff, J. W., Weintraub, S. R., Townsend, A. R., Cleveland, C. C., Philippot, L., & Nemergut, D. R. ( 2014 ). Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. Soil Biology and Biochemistry, 68, 279 - 282. https://doi.org/10.1016/j.soilbio.2013.08.023
dc.identifier.citedreferenceGrman, E., Zirbel, C. R., Bassett, T., & Brudvig, L. A. ( 2018 ). Ecosystem multifunctionality increases with beta diversity in restored prairies. Oecologia, 188 ( 3 ), 837 - 848. https://doi.org/10.1007/s00442- 018- 4248- 6
dc.identifier.citedreferenceHautier, Y., Isbell, F., Borer, E. T., Seabloom, E. W., Harpole, W. S., Lind, E. M., MacDougall, A. S., Stevens, C. J., Adler, P. B., Alberti, J., Bakker, J. D., Brudvig, L. A., Buckley, Y. M., Cadotte, M., Caldeira, M. C., Chaneton, E. J., Chu, C., Daleo, P., Dickman, C. R., - ¦ Hector, A. ( 2018 ). Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution, 2 ( 1 ), 50 - 56. https://doi.org/10.1038/s41559- 017- 0395- 0
dc.identifier.citedreferenceHijmans, R. J. ( 2021 ). raster: Geographic data analysis and modeling. R package version 3.4- 10. https://CRAN.R- project.org/package=raster
dc.identifier.citedreferenceHu, W., Ran, J., Dong, L., Du, Q., Ji, M., Yao, S., Sun, Y., Gong, C., Hou, Q., Gong, H., Chen, R., Lu, J., Xie, S., Wang, Z., Huang, H., Li, X., Xiong, J., Xia, R., Wei, M., - ¦ Deng, J. ( 2021 ). Aridity- driven shift in biodiversity- soil multifunctionality relationships. Nature Communications, 12 ( 1 ), 5350. https://doi.org/10.1038/s41467- 021- 25641- 0
dc.identifier.citedreferenceJax, K. ( 2005 ). Function and - functioning- in ecology: What does it mean? Oikos, 111 ( 3 ), 641 - 648. https://doi.org/10.1111/j.1600- 0706.2005.13851.x
dc.identifier.citedreferenceJing, X., Prager, C. M., Borer, E. T., Gotelli, N. J., Gruner, D. S., He, J.- S., Kirkman, K., MacDougall, A. S., McCulley, R. L., Prober, S. M., Seabloom, E. W., Stevens, C. J., Classen, A. T., & Sanders, N. J. ( 2021 ). Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial β- diversity. Ecosphere, 12 ( 7 ), e03644. https://doi.org/10.1002/ecs2.3644
dc.identifier.citedreferenceJing, X., Sanders, N. J., Shi, Y. U., Chu, H., Classen, A. T., Zhao, K. E., Chen, L., Shi, Y., Jiang, Y., & He, J.- S. ( 2015 ). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. https://doi.org/10.1038/ncomms9159
dc.identifier.citedreferenceJing, X., Wang, Y., Chung, H., Mi, Z., Wang, S., Zeng, H., & He, J.- S. ( 2014 ). No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry, 117, 39 - 54. https://doi.org/10.1007/s10533- 013- 9844- 2
dc.identifier.citedreferenceKraft, N. J. B., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., Stegen, J. C., Vellend, M., Boyle, B., Anderson, M. J., Cornell, H. V., Davies, K. F., Freestone, A. L., Inouye, B. D., Harrison, S. P., & Myers, J. A. ( 2011 ). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333 ( 6050 ), 1755 - 1758. https://doi.org/10.1126/science.1208584
dc.identifier.citedreferenceLadau, J., Shi, Y., Jing, X., He, J. S., Chen, L., Lin, X., Fierer, N., Gilbert, J. A., Pollard, K. S., & Chu, H. ( 2018 ). Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems, 3 ( 5 ), e00167- 00118. https://doi.org/10.1128/mSystems.00167- 18
dc.identifier.citedreferenceLeff, J. W., Bardgett, R. D., Wilkinson, A., Jackson, B. G., Pritchard, W. J., De Long, J. R., Oakley, S., Mason, K. E., Ostle, N. J., Johnson, D., Baggs, E. M., & Fierer, N. ( 2018 ). Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal, 12 ( 7 ), 1794 - 1805. https://doi.org/10.1038/s41396- 018- 0089- x
dc.identifier.citedreferenceLegendre, P. ( 2014 ). Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 23 ( 11 ), 1324 - 1334. https://doi.org/10.1111/geb.12207
dc.identifier.citedreferenceLiu, D., Chang, P. S., Power, S. A., Bell, J. N. B., & Manning, P. ( 2021 ). Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytologist, 232 ( 3 ), 1238 - 1249. https://doi.org/10.1111/nph.17667
dc.identifier.citedreferenceMa, W., He, J.- S., Yang, Y., Wang, X., Liang, C., Anwar, M., Zeng, H., Fang, J., & Schmid, B. ( 2010 ). Environmental factors covary with plant diversity- productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233 - 243. https://doi.org/10.1111/j.1466- 8238.2009.00508.x
dc.identifier.citedreferenceManning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J., & Fischer, M. ( 2018 ). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2 ( 3 ), 427 - 436. https://doi.org/10.1038/s41559- 017- 0461- 7
dc.identifier.citedreferenceMartinez- Almoyna, C., Thuiller, W., Chalmandrier, L., Ohlmann, M., Foulquier, A., Clément, J.- C., Zinger, L., & Münkemüller, T. ( 2019 ). Multi- trophic β- diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 33, 2053 - 2064. https://doi.org/10.1111/1365- 2435.13393
dc.identifier.citedreferenceMartiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner- Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., à vreås, L., Reysenbach, A.- L., Smith, V. H., & Staley, J. T. ( 2006 ). Microbial biogeography: Putting microorganisms on the map. Nature Review Microbiology, 4 ( 2 ), 102 - 112. https://doi.org/10.1038/nrmicro1341
dc.identifier.citedreferenceMartiny, J. B., Eisen, J. A., Penn, K., Allison, S. D., & Horner- Devine, M. C. ( 2011 ). Drivers of bacterial beta- diversity depend on spatial scale. Proceedings of the National Academy of Sciences USA, 108 ( 19 ), 7850 - 7854. https://doi.org/10.1073/pnas.1016308108
dc.identifier.citedreferenceMokany, K., Burley, H. M., & Paini, D. R. ( 2013 ). β diversity contributes to ecosystem processes more than by simply summing the parts. Proceedings of the National Academy of Sciences USA, 110 ( 43 ), E4057. https://doi.org/10.1073/pnas.1313429110
dc.identifier.citedreferenceMori, A. S., Isbell, F., Fujii, S., Makoto, K., Matsuoka, S., & Osono, T. ( 2016 ). Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 19 ( 3 ), 249 - 259. https://doi.org/10.1111/ele.12560
dc.identifier.citedreferenceMori, A. S., Isbell, F., & Seidl, R. ( 2018 ). β- Diversity, community assembly, and ecosystem functioning. Trends in Ecology and Evolution, 33 ( 7 ), 549 - 564. https://doi.org/10.1016/j.tree.2018.04.012
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.