Show simple item record

Decay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability

dc.contributor.authorArgiroff, William A.
dc.contributor.authorZak, Donald R.
dc.contributor.authorPellitier, Peter T.
dc.contributor.authorUpchurch, Rima A.
dc.contributor.authorBelke, Julia P.
dc.date.accessioned2022-02-07T20:22:44Z
dc.date.available2023-03-07 15:22:43en
dc.date.available2022-02-07T20:22:44Z
dc.date.issued2022-02
dc.identifier.citationArgiroff, William A.; Zak, Donald R.; Pellitier, Peter T.; Upchurch, Rima A.; Belke, Julia P. (2022). "Decay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability." Ecology Letters (2): 391-404.
dc.identifier.issn1461-023X
dc.identifier.issn1461-0248
dc.identifier.urihttps://hdl.handle.net/2027.42/171536
dc.description.abstractInteractions between soil nitrogen (N) availability, fungal community composition, and soil organic matter (SOM) regulate soil carbon (C) dynamics in many forest ecosystems, but context dependency in these relationships has precluded general predictive theory. We found that ectomycorrhizal (ECM) fungi with peroxidases decreased with increasing inorganic N availability across a natural inorganic N gradient in northern temperate forests, whereas ligninolytic fungal saprotrophs exhibited no response. Lignin‐derived SOM and soil C were negatively correlated with ECM fungi with peroxidases and were positively correlated with inorganic N availability, suggesting decay of lignin‐derived SOM by these ECM fungi reduced soil C storage. The correlations we observed link SOM decay in temperate forests to tradeoffs in tree N nutrition and ECM composition, and we propose SOM varies along a single continuum across temperate and boreal ecosystems depending upon how tree allocation to functionally distinct ECM taxa and environmental stress covary with soil N availability.Ectomycorrhizal fungi with peroxidases decline with increasing soil inorganic nitrogen availability. Lignin‐derived soil organic matter and total soil carbon are negatively correlated with ectomycorrhizal fungi with peroxidases, causing soil carbon storage to increase with increasing soil inorganic nitrogen. Naturally high soil inorganic nitrogen availability in temperate forests promotes soil carbon storage by reducing the decay of lignin‐derived soil organic matter by ectomycorrhizal fungi with peroxidases.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.othernitrogen
dc.subject.othersaprotrophic fungi
dc.subject.othersoil carbon
dc.subject.otherplant–soil interactions
dc.subject.othermycorrhizal fungi
dc.subject.otherdecomposition
dc.subject.otherlignin
dc.subject.otherfine roots
dc.titleDecay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171536/1/ele13923.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171536/2/ele13923_am.pdf
dc.identifier.doi10.1111/ele.13923
dc.identifier.sourceEcology Letters
dc.identifier.citedreferenceRosen, M.J., Callahan, B.J., Fisher, D.S. & Holmes, S.P. ( 2012 ) Denoising PCR‐amplified metagenome data. BMC Bioinformatics, 13, 283.
dc.identifier.citedreferenceRuiz‐Dueñas, F.J., Barrasa, J.M., Sánchez‐García, M., Camarero, S., Miyauchi, S., Serrano, A. et al. ( 2021 ) Genomic analysis enlightens agaricales lifestyle evolution and increasing peroxidase diversity. Molecular Biology and Evolution, 38, 1428 – 1446.
dc.identifier.citedreferenceSchoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A. et al. ( 2012 ) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241 – 6246.
dc.identifier.citedreferenceSeitzman, B.H., Ouimette, A., Mixon, R.L., Hobbie, E.A. & Hibbett, D.S. ( 2011 ) Conservation of biotrophy in Hygrophoraceae inferred from combined stable isotope and phylogenetic analyses. Mycologia, 103, 280 – 290.
dc.identifier.citedreferenceShah, F., Nicolás, C., Bentzer, J., Ellström, M., Smits, M., Rineau, F. et al. ( 2016 ) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist, 209, 1705 – 1719.
dc.identifier.citedreferenceSmith, G.R. & Wan, J. ( 2019 ) Resource‐ratio theory predicts mycorrhizal control of litter decomposition. New Phytologist, 223, 1595 – 1606.
dc.identifier.citedreferenceSmith, S.E. & Read, D.J. ( 2008 ) Mycorrhizal symbiosis, 3rd edition. San Diego, CA: Academic Press.
dc.identifier.citedreferenceSteidinger, B.S., Bhatnagar, J.M., Vilgalys, R., Taylor, J.W., Qin, C., Zhu, K. et al. ( 2020 ) Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. Journal of Biogeography, 47 ( 3 ), 772 – 782.
dc.identifier.citedreferenceSterkenburg, E., Bahr, A., Durling, M.B., Clemmensen, K.E. & Lindahl, B.D. ( 2015 ) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist, 207, 1145 – 1158.
dc.identifier.citedreferenceSterkenburg, E., Clemmensen, K.E., Ekblad, A., Finlay, R.D. & Lindahl, B.D. ( 2018 ) Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal, 12, 2187 – 2197.
dc.identifier.citedreferenceSun, T., Hobbie, S.E., Berg, B., Zhang, H., Wang, Q., Wang, Z. et al. ( 2018 ) Contrasting dynamics and trait controls in first‐order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 115, 10392 – 10397.
dc.identifier.citedreferenceTaylor, D.L., Hollingsworth, T.N., McFarland, J.W., Lennon, N.J., Nusbaum, C. & Ruess, R.W. ( 2014 ) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning. Ecological Monographs, 84, 3 – 20.
dc.identifier.citedreferenceTaylor, D.L., Walters, W.A., Lennon, N.J., Bochicchio, J., Krohn, A., Caporaso, J.G. et al. ( 2016 ) Accurate estimation of fungal diversity and abundance through improved lineage‐specific primers optimized for illumina amplicon sequencing. Applied and Environment Microbiology, 82, 7217 – 7226.
dc.identifier.citedreferenceTerrer, C., Phillips, R.P., Hungate, B.A., Rosende, J., Pett‐Ridge, J., Craig, M.E. et al. ( 2021 ) A trade‐off between plant and soil carbon storage under elevated CO 2. Nature, 591, 599 – 603.
dc.identifier.citedreferenceTerrer, C., Vicca, S., Hungate, B.A., Phillips, R.P. & Prentice, I.C. ( 2016 ) Mycorrhizal association as a primary control of the CO 2 fertilization effect. Science, 353, 72 – 74.
dc.identifier.citedreferenceThomas, D.C., Zak, D.R. & Filley, T.R. ( 2012 ) Chronic N deposition does not apparently alter the biochemical composition of forest floor and soil organic matter. Soil Biology & Biochemistry, 54, 7 – 13.
dc.identifier.citedreferenceTreseder, K.K., Torn, M.S. & Masiello, C.A. ( 2006 ) An ecosystem‐scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biology & Biochemistry, 38, 1077 – 1082.
dc.identifier.citedreferenceVitousek, P.M., Gosz, J.R., Grier, C.C., Melillo, J.M. & Reiners, W.A. ( 1982 ) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs, 52, 155 – 177.
dc.identifier.citedreferenceWang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. ( 2007 ) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environment Microbiology, 73, 5261 – 5267.
dc.identifier.citedreferenceWickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R. et al. ( 2019 ) Welcome to the tidyverse. Journal of Open Source Software, 4, 1686.
dc.identifier.citedreferenceWood, S.N. ( 2011 ) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 ( 1 ), 3 – 36.
dc.identifier.citedreferenceXia, M., Guo, D. & Pregitzer, K.S. ( 2010 ) Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065 – 1074.
dc.identifier.citedreferenceXia, M., Talhelm, A.F. & Pregitzer, K.S. ( 2015 ) Fine roots are the dominant source of recalcitrant plant litter in sugar maple‐dominated northern hardwood forests. New Phytologist, 208, 715 – 726.
dc.identifier.citedreferenceXia, M., Talhelm, A.F. & Pregitzer, K.S. ( 2018 ) Long‐term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems, 21, 1 – 14.
dc.identifier.citedreferenceZak, D.R., Argiroff, W.A., Freedman, Z.B., Upchurch, R.A., Entwistle, E.M. & Romanowicz, K.J. ( 2019 ) Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology, 100, e02804.
dc.identifier.citedreferenceZak, D.R., Holmes, W.E., Burton, A.J., Pregitzer, K.S. & Talhelm, A.F. ( 2008 ) Simulated atmospheric NO 3 − deposition increases soil organic matter by slowing decomposition. Ecological Applications, 18, 2016 – 2027.
dc.identifier.citedreferenceZak, D.R., Host, G.E. & Pregitzer, K.S. ( 1989 ) Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research, 19, 1521 – 1526.
dc.identifier.citedreferenceZak, D.R., Pellitier, P.T., Argiroff, WilliamA, Castillo, B., James, T.Y., Nave, L.E. et al. ( 2019 ) Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytologist, 223 ( 1 ), 33 – 39.
dc.identifier.citedreferenceZak, D.R. & Pregitzer, K.S. ( 1990 ) Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. Forest Science, 36, 367 – 380.
dc.identifier.citedreferenceArgiroff, W.A., Zak, D.R., Upchurch, R.A., Salley, S.O. & Grandy, A.S. ( 2019 ) Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots. Global Change Biology, 25, 4369 – 4382.
dc.identifier.citedreferenceAverill, C., Dietze, M.C. & Bhatnagar, J.M. ( 2018 ) Continental‐scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology, 24, 4544 – 4553.
dc.identifier.citedreferenceAverill, C. & Hawkes, C.V. ( 2016 ) Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19, 937 – 947.
dc.identifier.citedreferenceAverill, C. & Waring, B. ( 2018 ) Nitrogen limitation of decomposition and decay: how can it occur? Global Change Biology, 24, 1417 – 1427.
dc.identifier.citedreferenceBaker, M.E. & King, R.S. ( 2010 ) A new method for detecting and interpreting biodiversity and ecological community thresholds: threshold Indicator Taxa ANalysis (TITAN). Methods in Ecology and Evolution, 1, 25 – 37.
dc.identifier.citedreferenceBaldrian, P. ( 2009 ) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia, 161, 657 – 660.
dc.identifier.citedreferenceBaskaran, P., Hyvönen, R., Berglund, S.L., Clemmensen, K.E., Ågren, G.I., Lindahl, B.D. et al. ( 2017 ) Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytologist, 213, 1452 – 1465.
dc.identifier.citedreferenceBenjamini, Y. & Hochberg, Y. ( 1995 ) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289 – 300.
dc.identifier.citedreferenceBödeker, I.T.M., Clemmensen, K.E., de Boer, W., Martin, F., Olson, Å. & Lindahl, B.D. ( 2014 ) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist, 203, 245 – 256.
dc.identifier.citedreferenceBödeker, I.T.M., Nygren, C.M.R., Taylor, A.F.S., Olson, A. & Lindahl, B.D. ( 2009 ) ClassII peroxidase‐encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. The ISME Journal, 3, 1387 – 1395.
dc.identifier.citedreferenceBogar, L., Peay, K., Kornfeld, A., Huggins, J., Hortal, S., Anderson, I. et al. ( 2019 ) Plant‐mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza, 29, 97 – 111.
dc.identifier.citedreferenceBradford, M.A., Wood, S.A., Addicott, E.T., Fenichel, E.P., Fields, N., González‐Rivero, J. et al. ( 2021 ) Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry, 156 ( 1 ), 19 – 40.
dc.identifier.citedreferenceCallahan, B.J., McMurdie, P.J. & Holmes, S.P. ( 2017 ) Exact sequence variants should replace operational taxonomic units in marker‐gene data analysis. The ISME Journal, 11, 2639 – 2643.
dc.identifier.citedreferenceCallahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. ( 2016 ) DADA2: high‐resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581 – 583.
dc.identifier.citedreferenceCampbell, J.E., Berry, J.A., Seibt, U., Smith, S.J., Montzka, S.A., Launois, T. et al. ( 2017 ) Large historical growth in global terrestrial gross primary production. Nature, 544, 84 – 87.
dc.identifier.citedreferenceChen, J.I., Luo, Y., van Groenigen, K.J., Hungate, B.A., Cao, J., Zhou, X. et al. ( 2018 ) A keystone microbial enzyme for nitrogen control of soil carbon storage. Science Advances, 4, eaaq1689.
dc.identifier.citedreferenceClemmensen, K.E., Durling, M.B., Michelsen, A., Hallin, S., Finlay, R.D. & Lindahl, B.D. ( 2021 ) A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecology Letters, 24 ( 6 ), 1193 – 1204.
dc.identifier.citedreferenceClemmensen, K.E., Finlay, R.D., Dahlberg, A., Stenlid, J., Wardle, D.A. & Lindahl, B.D. ( 2015 ) Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. New Phytologist, 205, 1525 – 1536.
dc.identifier.citedreferenceCline, L.C. & Zak, D.R. ( 2015 ) Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate. Molecular Ecology, 24, 5045 – 5058.
dc.identifier.citedreferenceDe Crop, E., Nuytinck, J., Van de Putte, K., Wisitrassameewong, K., Hackel, J., Stubbe, D. et al. ( 2017 ) A multi‐gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus. Persoonia, 38, 58 – 80.
dc.identifier.citedreferenceDefrenne, C.E., Philpott, T.J., Guichon, S.H.A., Roach, W.J., Pickles, B.J. & Simard, S.W. ( 2019 ) Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine‐root traits across interior Douglas‐fir forests of Western Canada. Frontiers in Plant Science, 10, 643.
dc.identifier.citedreferenceEntwistle, E.M., Romanowicz, K.J., Argiroff, W.A., Freedman, Z.B., Morris, J.J. & Zak, D.R. ( 2018 ) Anthropogenic N deposition alters the composition of expressed class II fungal peroxidases. Applied and Environment Microbiology, 84, e02816‐17.
dc.identifier.citedreferenceEntwistle, E.M., Zak, D.R. & Argiroff, W.A. ( 2018 ) Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. Ecological Monographs, 88, 225 – 244.
dc.identifier.citedreferenceFernandez, C.W. & Kennedy, P.G. ( 2016 ) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytologist, 209, 1382 – 1394.
dc.identifier.citedreferenceFernandez, C.W., See, C.R. & Kennedy, P.G. ( 2020 ) Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition. New Phytologist, 226, 569 – 582.
dc.identifier.citedreferenceFloudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B. et al. ( 2012 ) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336, 1715 – 1719.
dc.identifier.citedreferenceFreschet, G.T., Cornwell, W.K., Wardle, D.A., Elumeeva, T.G., Liu, W., Jackson, B.G. et al. ( 2013 ) Linking litter decomposition of above‐ and below‐ground organs to plant–soil feedbacks worldwide. Journal of Ecology, 101, 943 – 952.
dc.identifier.citedreferenceGadgil, R.L. & Gadgil, P.D. ( 1971 ) Mycorrhiza and litter decomposition. Nature, 233, 133.
dc.identifier.citedreferenceGrandy, A.S., Neff, J.C. & Weintraub, M.N. ( 2007 ) Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biology & Biochemistry, 39, 2701 – 2711.
dc.identifier.citedreferenceGrandy, A.S., Strickland, M.S., Lauber, C.L., Bradford, M.A. & Fierer, N. ( 2009 ) The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma, 150, 278 – 286.
dc.identifier.citedreferenceHobbie, S.E., Oleksyn, J., Eissenstat, D.M. & Reich, P.B. ( 2010 ) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia, 162, 505 – 513.
dc.identifier.citedreferenceHofrichter, M. ( 2002 ) Review: lignin conversion by manganese peroxidase (MnP). Enyzme and Microbial Technology, 30, 454 – 466.
dc.identifier.citedreferenceHortal, S., Plett, K.L., Plett, J.M., Cresswell, T., Johansen, M., Pendall, E. et al. ( 2017 ) Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME Journal, 11, 2666 – 2676.
dc.identifier.citedreferenceJackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G. & Piñeiro, G. ( 2017 ) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology Evolution and Systematics, 48, 419 – 445.
dc.identifier.citedreferenceKirk, T.K. & Farrell, R.L. ( 1987 ) Enzymatic ‘combustion’: the microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465 – 501.
dc.identifier.citedreferenceKohler, A., Kuo, A., Nagy, L.G., Morin, E., Barry, K.W., Buscot, F. et al. ( 2015 ) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410 – 415.
dc.identifier.citedreferenceKohout, P., Charvátová, M., Štursová, M., Mašínová, T., Tomšovský, M. & Baldrian, P. ( 2018 ) Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME Journal, 12, 692 – 703.
dc.identifier.citedreferenceKõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M. et al. ( 2013 ) Towards a unified paradigm for sequence‐based identification of fungi. Molecular Ecology, 22, 5271 – 5277.
dc.identifier.citedreferenceKyaschenko, J., Clemmensen, K.E., Karltun, E. & Lindahl, B.D. ( 2017 ) Below‐ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecology Letters, 20, 1546 – 1555.
dc.identifier.citedreferenceLegendre, P. & Legendre, L. ( 2012 ) Numerical ecology. Oxford, UK: Elsevier.
dc.identifier.citedreferenceLevasseur, A., Drula, E., Lombard, V., Coutinho, P.M. & Henrissat, B. ( 2013 ) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 6, 41.
dc.identifier.citedreferenceLi, A., Fahey, T.J., Pawlowska, T.E., Fisk, M.C. & Burtis, J. ( 2015 ) Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biology & Biochemistry, 83, 76 – 83.
dc.identifier.citedreferenceLilleskov, E.A., Fahey, T.J., Horton, T.R. & Lovett, G.M. ( 2002 ) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83, 104 – 115.
dc.identifier.citedreferenceLindahl, B.D., Kyaschenko, J., Varenius, K., Clemmensen, K.E., Dahlberg, A., Karltun, E. et al. ( 2021 ) A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecology Letters, 24 ( 7 ), 1341 – 1351.
dc.identifier.citedreferenceLindahl, B.D. & Tunlid, A. ( 2015 ) Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytologist, 205, 1443 – 1447.
dc.identifier.citedreferenceLombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M. & Henrissat, B. ( 2014 ) The carbohydrate‐active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490 – D495.
dc.identifier.citedreferenceMartin, M. ( 2011 ) Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.journal, 17, 10 – 12.
dc.identifier.citedreferenceMartino, E., Morin, E., Grelet, G.‐A., Kuo, A., Kohler, A., Daghino, S. et al. ( 2018 ) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 217, 1213 – 1229.
dc.identifier.citedreferenceMayer, M., Rewald, B., Matthews, B., Sandén, H., Rosinger, C., Katzensteiner, K. et al. ( 2021 ) Soil fertility relates to fungal‐mediated decomposition and organic matter turnover in a temperate mountain forest. New Phytologist, 231 ( 2 ), 777 – 790.
dc.identifier.citedreferenceMcCormack, M.L., Dickie, I.A., Eissenstat, D.M., Fahey, T.J., Fernandez, C.W., Guo, D. et al. ( 2015 ) Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505 – 518.
dc.identifier.citedreferenceMcMurdie, P.J. & Holmes, S. ( 2013 ) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8, e61217.
dc.identifier.citedreferenceMcMurdie, P.J. & Holmes, S. ( 2014 ) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology, 10, e1003531.
dc.identifier.citedreferenceMiyauchi, S., Kiss, E., Kuo, A., Drula, E., Kohler, A., Sánchez‐García, M. et al. ( 2020 ) Large‐scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 11, 1 – 17.
dc.identifier.citedreferenceMorgan, M., Anders, S., Lawrence, M., Aboyoun, P., Pagès, H. & Gentleman, R. ( 2009 ) ShortRead: a bioconductor package for input, quality assessment and exploration of high‐throughput sequence data. Bioinformatics, 25, 2607 – 2608.
dc.identifier.citedreferenceNagy, L.G., Riley, R., Tritt, A., Adam, C., Daum, C., Floudas, D. et al. ( 2016 ) Comparative genomics of early‐diverging mushroom‐forming fungi provides insights into the origins of lignocellulose decay capabilities. Molecular Biology and Evolution, 33, 959 – 970.
dc.identifier.citedreferenceNguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J. et al. ( 2016 ) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241 – 248.
dc.identifier.citedreferenceNilsson, R.H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P. & Tedersoo, L. ( 2019 ) Mycobiome diversity: high‐throughput sequencing and identification of fungi. Nature Reviews Microbiology, 17, 95 – 109.
dc.identifier.citedreferenceNilsson, R.H., Larsson, K.‐H., Taylor, A.F.S., Bengtsson‐Palme, J., Jeppesen, T.S., Schigel, D. et al. ( 2019 ) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47, D259 – D264.
dc.identifier.citedreferenceOrwin, K.H., Kirschbaum, M.U.F., St John, M.G. & Dickie, I.A. ( 2011 ) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment. Ecology Letters, 14, 493 – 502.
dc.identifier.citedreferencePagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. ( 2020 ) Biostrings: efficient manipulation of biological strings.
dc.identifier.citedreferencePauvert, C., Buée, M., Laval, V., Edel‐Hermann, V., Fauchery, L., Gautier, A. et al. ( 2019 ) Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecology, 41, 23 – 33.
dc.identifier.citedreferencePellitier, P.T., Ibáñez, I., Zak, D.R., Argiroff, W.A. & Acharya, K. ( 2021 ) Ectomycorrhizal access to organic nitrogen mediates CO 2 fertilization response in a dominant temperate tree. Nature Communications, 12, 1 – 12. https://doi.org/10.1038/s41467‐021‐25652‐x
dc.identifier.citedreferencePellitier, P.T. & Zak, D.R. ( 2018 ) Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytologist, 217, 68 – 73.
dc.identifier.citedreferencePellitier, P.T. & Zak, D.R. ( 2021 ) Ectomycorrhizal fungal decay traits along a soil nitrogen gradient. New Phytologist, 232, 2152 – 2164. https://doi.org/10.1111/nph.17734
dc.identifier.citedreferencePellitier, P.T., Zak, D.R., Argiroff, W.A. & Upchurch, R.A. ( 2021 ) Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: An isotopic perspective. Ecosystems, https://doi.org/10.1007/s10021‐021‐00628‐6
dc.identifier.citedreferencePellitier, P.T., Zak, D.R. & Salley, S.O. ( 2019 ) Environmental filtering structures fungal endophyte communities in tree bark. Molecular Ecology, 28, 5188 – 5198.
dc.identifier.citedreferencePhillips, R.P., Brzostek, E. & Midgley, M.G. ( 2013 ) The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon‐nutrient couplings in temperate forests. New Phytologist, 199, 41 – 51.
dc.identifier.citedreferencePhilpott, T.J., Barker, J.S., Prescott, C.E. & Grayston, S.J. ( 2017 ) Limited effects of variable‐retention harvesting on fungal communities decomposing fine roots in coastal temperate rainforests. Applied and Environment Microbiology, 84, e02061‐17.
dc.identifier.citedreferencePold, G., Grandy, A.S., Melillo, J.M. & DeAngelis, K.M. ( 2017 ) Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biology & Biochemistry, 110, 68 – 78.
dc.identifier.citedreferenceProsser, J.I. ( 2020 ) Putting science back into microbial ecology: a question of approach. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375, 20190240.
dc.identifier.citedreferenceR Core Team. ( 2020 ) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceRineau, F., Roth, D., Shah, F., Smits, M., Johansson, T., Canbäck, B. et al. ( 2012 ) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown‐rot mechanism involving Fenton chemistry. Environmental Microbiology, 14, 1477 – 1487.
dc.identifier.citedreferenceRStudio Team. ( 2020 ) RStudio: integrated development for R. Boston, MA, USA: RStudio, Inc.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.