Show simple item record

The impeded diffusion fraction quantitative imaging assay demonstrated in multi‐exponential diffusion phantom and prostate cancer

dc.contributor.authorMalyarenko, Dariya I.
dc.contributor.authorSwanson, Scott D.
dc.contributor.authorMcGarry, Sean D.
dc.contributor.authorLaViolette, Peter S.
dc.contributor.authorChenevert, Thomas L.
dc.date.accessioned2022-02-07T20:23:11Z
dc.date.available2023-05-07 15:23:10en
dc.date.available2022-02-07T20:23:11Z
dc.date.issued2022-04
dc.identifier.citationMalyarenko, Dariya I.; Swanson, Scott D.; McGarry, Sean D.; LaViolette, Peter S.; Chenevert, Thomas L. (2022). "The impeded diffusion fraction quantitative imaging assay demonstrated in multi‐exponential diffusion phantom and prostate cancer." Magnetic Resonance in Medicine (4): 2053-2062.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/171547
dc.publisherAmerican Cancer Society, Inc
dc.publisherWiley Periodicals, Inc.
dc.subject.otherimpeded diffusion fraction (IDF)
dc.subject.othermacromolecular density
dc.subject.othercollective coordinated diffusion
dc.subject.otherclinical oncology DWI
dc.subject.othersub‐cellular compartment
dc.titleThe impeded diffusion fraction quantitative imaging assay demonstrated in multi‐exponential diffusion phantom and prostate cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171547/1/mrm29075_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171547/2/mrm29075.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171547/3/mrm29075-sup-0001-Supinfo.pdf
dc.identifier.doi10.1002/mrm.29075
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceMalyarenko DI, Swanson SD, Konar AS, et al. Multicenter repeatability study of a novel quantitative diffusion kurtosis imaging phantom. Tomography. 2019; 5: 36 ‐ 43.
dc.identifier.citedreferenceShukla‐Dave A, Obuchowski NA, Chenevert TL, et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2019; 49: e101 ‐ e121.
dc.identifier.citedreferenceAmerican Cancer Society. Cancer Facts and Statistics 2021. American Cancer Society, Inc; 2021 [cited 2021 August 20]. Available from: https://www.cancer.org/research/cancer‐facts‐statistics/all‐cancer‐facts‐figures/cancer‐facts‐figures‐2021.html
dc.identifier.citedreferenceAuffenberg GB, Lane BR, Linsell S, et al. A roadmap for improving the management of favorable risk prostate cancer. J Urology. 2017; 198: 1221 ‐ 1223.
dc.identifier.citedreferenceShankar PR, Maturen KE, George AK, et al. Temporary health impact of prostate MRI and transrectal prostate biopsy in active surveillance prostate cancer patients. J Am Coll Radiol. 2019; 16: 1385 ‐ 1392.
dc.identifier.citedreferenceEuropean Association of Urology. Prostate Cancer Evaluation Guidelines. The Netherlands: European Association of Urology; Sec.6.2.1.4 2019 [cited 2021 August 20]. Available from: https://uroweb.org/guideline/prostate‐cancer/
dc.identifier.citedreferenceHurrell SL, McGarry SD, Kaczmarowski A, et al. Optimized b‐value selection for the discrimination of prostate cancer grades, including the cribriform pattern, using diffusion weighted imaging. J Med Imaging (Bellingham). 2018; 5:011004.
dc.identifier.citedreferenceHectors SJ, Semaan S, Song C, et al. Advanced diffusion‐weighted imaging modeling for prostate cancer characterization: correlation with quantitative histopathologic tumor tissue composition‐a hypothesis‐generating study. Radiology. 2018; 286: 918 ‐ 928.
dc.identifier.citedreferenceRosenkrantz AB, Padhani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging. 2015; 42: 1190 ‐ 1202.
dc.identifier.citedreferenceChatterjee A, Bourne RM, Wang SY, et al. Diagnosis of prostate cancer with noninvasive estimation of prostate tissue composition by using hybrid multidimensional MR imaging: a feasibility study. Radiology. 2018; 287: 864 ‐ 873.
dc.identifier.citedreferenceGilani N, Malcolm P, Johnson G. A model describing diffusion in prostate cancer. Magn Reson Med. 2017; 78: 316 ‐ 326.
dc.identifier.citedreferenceJohnston EW, Bonet‐Carne E, Ferizi U, et al. VERDICT MRI for prostate cancer: intracellular volume fraction versus apparent diffusion coefficient. Radiology. 2019; 291: 391 ‐ 397.
dc.identifier.citedreferenceMcHugh DJ, Hubbard Cristinacce PL, Naish JH, Parker GJM. Towards a ’resolution limit’ for DW‐MRI tumor microstructural models: a simulation study investigating the feasibility of distinguishing between microstructural changes. Magn Reson Med. 2019; 81: 2288 ‐ 2301.
dc.identifier.citedreferenceMalyarenko DI, Swanson SD, Chenevert TL, editors. Impeded diffusion fraction model for multi‐exponential DWI: demonstration in kurtosis phantom and prostate cancer. In Proceedings of the ISMRM & SMRT Virtual Conference & Exhibition, 2020. Abstract PP3705.
dc.identifier.citedreferenceHolz M, Heil SR, Sacco A. Temperature‐dependent self‐diffusion coefficients of water and six selected molecular liquids for calibration in accurate H‐1 NMR PFG measurements. Phys Chem Chem Phys. 2000; 2: 4740 ‐ 4742.
dc.identifier.citedreferencePolnaszek CF, Bryant RG. Self‐diffusion of water at the protein surface: a measurement. J Am Chem Soc. 1984; 106: 429 ‐ 430.
dc.identifier.citedreferenceTrovato F, Tozzini V. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules. Biophys J. 2014; 107: 2579 ‐ 2591.
dc.identifier.citedreferenceInaba T. Quantitative measurements of prostatic blood flow and blood volume by positron emission tomography. J Urol. 1992; 148: 1457 ‐ 1460.
dc.identifier.citedreferenceRashid R, Lim NSJ, Chee SML, Png SN, Wohland T, Raghunath M. Novel use for polyvinylpyrrolidone as a macromolecular crowder for enhanced extracellular matrix deposition and cell proliferation. Tissue Eng Part C‐Me. 2014; 20: 994 ‐ 1002.
dc.identifier.citedreferenceSwanson SD, Malyarenko DI, Chenevert TL, editors. Tunable diffusion kurtosis in lamellar vesicle suspensions toward development of quantitative phantom surrogate of tumor microenvironment. ISMRM 27, Montreal, Canada, 2019. Abstract TP3632.
dc.identifier.citedreferenceCarlin D, Orton MR, Collins D, deSouza NM. Probing structure of normal and malignant prostate tissue before and after radiation therapy with luminal water fraction and diffusion‐weighted MRI. J Magn Reson Imaging. 2019; 50: 619 ‐ 627.
dc.identifier.citedreferenceDevine W, Giganti F, Johnston EW, et al. Simplified luminal water imaging for the detection of prostate cancer from multiecho T‐2 MR images. J Magn Reson Imaging. 2019; 50: 910 ‐ 917.
dc.identifier.citedreferenceBojorquez JZ, Bricq S, Acquitter C, Brunotte F, Walker PM, Lalande A. What are normal relaxation times of tissues at 3 T? Magn Reson Imaging. 2017; 35: 69 ‐ 80.
dc.identifier.citedreferenceStanisz GJ, Odrobina EE, Pun J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med. 2005; 54: 507 ‐ 512.
dc.identifier.citedreferenceLe Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology. 2013; 268: 318 ‐ 322.
dc.identifier.citedreferenceMessina C, Bignone R, Bruno A, et al. Diffusion‐weighted imaging in oncology: an update. Cancers (Basel). 2020; 12: 1493.
dc.identifier.citedreferenceTaouli B, Beer AJ, Chenevert T, et al. Diffusion‐weighted imaging outside the brain: Consensus statement from an ISMRM‐sponsored workshop. J Magn Reson Imaging. 2016; 44: 521 ‐ 540.
dc.identifier.citedreferenceIima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology. 2016; 278: 13 ‐ 32.
dc.identifier.citedreferenceJensen JH, Helpern JA. MRI quantification of non‐Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010; 23: 698 ‐ 710.
dc.identifier.citedreferencePanagiotaki E, Chan RW, Dikaios N, et al. Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Invest Radiol. 2015; 50: 218 ‐ 227.
dc.identifier.citedreferenceCerny M, Chernyak V, Olivie D, et al. LI‐RADS version 2018 ancillary features at MRI. Radiographics. 2018; 38: 1973 ‐ 2001.
dc.identifier.citedreferencePurysko AS, Rosenkrantz AB, Barentsz JO, Weinreb JC, Macura KJ. PI‐RADS version 2: a pictorial update. Radiographics. 2016; 36: 1354 ‐ 1372.
dc.identifier.citedreferenceBarkovich EJ, Shankar PR, Westphalen AC. A systematic review of the existing prostate imaging reporting and data system version 2 (PI‐RADSv2) literature and subset meta‐analysis of PI‐RADSv2 categories stratified by Gleason scores. AJR Am J Roentgenol. 2019; 212: 847 ‐ 854.
dc.identifier.citedreferenceRahbar H, Zhang Z, Chenevert TL, et al. Utility of diffusion‐weighted imaging to decrease unnecessary biopsies prompted by breast MRI: a trial of the ECOG‐ACRIN cancer research group (A6702). Clin Cancer Res. 2019; 25: 1756 ‐ 1765.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.