Show simple item record

MESSENGER X‐Ray Observations of Electron Precipitation on the Dayside of Mercury

dc.contributor.authorLindsay, S. T.
dc.contributor.authorBunce, E. J.
dc.contributor.authorImber, S. M.
dc.contributor.authorMartindale, A.
dc.contributor.authorNittler, L. R.
dc.contributor.authorYeoman, T. K.
dc.date.accessioned2022-02-07T20:23:46Z
dc.date.available2023-02-07 15:23:42en
dc.date.available2022-02-07T20:23:46Z
dc.date.issued2022-01
dc.identifier.citationLindsay, S. T.; Bunce, E. J.; Imber, S. M.; Martindale, A.; Nittler, L. R.; Yeoman, T. K. (2022). "MESSENGER X‐Ray Observations of Electron Precipitation on the Dayside of Mercury." Journal of Geophysical Research: Space Physics 127(1): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/171562
dc.description.abstractThe first maps of electron‐induced X‐ray emission from the dayside of Mercury’s surface are presented, generated by the development of a solar X‐ray flux filter. This enables the isolation of the X‐ray fluorescence of calcium driven by probable electron precipitation. A catalog of such events has been generated and dayside maps of implied electron precipitation zones have been produced. We find that, similar to electron induced emission events on the nightside, these zones are strongly organized by latitude and magnetic local time. The majority of the dayside events appear in the southern hemisphere and there is a strong enhancement observed centered about local dawn (06:00 LT). There is apparent poleward continuation of emission in the north, but very few events were observed on the duskward hemisphere. These results carry implications for Mercury’s magnetosphere by constraining zones of electron precipitation, for the exosphere as a potential source of exospheric species, and for surface science as an additional source of X‐ray fluorescence.Plain Language SummaryMercury has a magnetic field which is similar to Earth’s, and charged particles (electrons and protons) within it move in similar ways. At Earth, particles which reach the atmosphere generate the aurora borealis and aurora australis (northern and southern lights). At Mercury, there is no atmosphere so these particles reach the surface, where they produce X‐rays. At night, it is relatively simple to detect these X‐rays and map the regions where they are being produced, because the only source of X‐rays is the particles reaching the surface. During the day, however, the signal can easily be overwhelmed because at the same time X‐rays are being produced in response to illumination by the Sun. We have been able to tentatively isolate the X‐ray signal coming from charged particles during the day on Mercury by applying a filter which takes into account the brightness of the Sun in X‐rays at the same time. When the sun is dim in X‐rays but the surface is bright, we can be confident that the surface signal comes from charged particles, and vice versa.Key PointsWe have isolated electron‐induced X‐ray fluorescence on the dayside of Mercury to a confidence level dependent on solar X‐ray fluxThe areas of X‐ray emission show where electrons reach the surface, and clarify the interaction between Mercury’s magnetosphere and surfaceInstead of identifying specific events as solar‐ or electron‐induced, we gradually relax a solar filter to see the changes in precipitation
dc.publisherNIST Center for Neutron Research
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectrons
dc.subject.othermercury
dc.subject.othermagnetosphere
dc.subject.otherX‐ray fluorescence
dc.subject.otherprecipitation
dc.subject.othersurface
dc.titleMESSENGER X‐Ray Observations of Electron Precipitation on the Dayside of Mercury
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171562/1/jgra56975_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171562/2/jgra56975.pdf
dc.identifier.doi10.1029/2021JA029675
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSchlemm, C. E., Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., et al. ( 2007 ). The X‐Ray spectrometer on the MESSENGER spacecraft. Space Science Reviews, 131, 393 – 415. https://doi.org/10.1007/s11214-007-9248-5
dc.identifier.citedreferenceHeyner, D., Nabert, C., Liebert, E., & Glassmeier, K.‐H. ( 2016 ). Concerning reconnection‐induction balance at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 2935 – 2961, https://doi.org/10.1002/2015JA021484
dc.identifier.citedreferenceHo, G. C., Starr, R. D., Gold, R. E., Krimigis, S. M., Slavin, J. A., Baker, D. N., et al. ( 2011 ). Observations of suprathermal electrons in Mercury’s magnetosphere during the three MESSENGER flybys. Planetary and Space Science, 59, 2016 – 2025. https://doi.org/10.1016/j.pss.2011.01.011
dc.identifier.citedreferenceHo, G. C., Starr, R. D., Krimigis, S. M., Vandegriff, J. D., Baker, D. N., Gold, R. E., et al. ( 2016 ). MESSENGER observations of suprathermal electrons in Mercury’s magnetosphere. Geophysical Research Letters, 43 ( 2 ), 550 – 555. https://doi.org/10.1002/2015GL066850
dc.identifier.citedreferenceKhurana, K. K., Pappalardo, R. T., Murphy, N., & Denk, T. ( 2007 ). The origin of Ganymede’s polar caps. Icarus, 191 ( 1 ), 193 – 202. https://doi.org/10.1016/j.icarus.2007.04.022
dc.identifier.citedreferenceKillen, R. M., & Hahn, J. M. ( 2015 ). Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus, 250, 230 – 237. https://doi.org/10.1016/j.icarus.2014.11.035
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., et al. ( 2014 ). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. Journal of Geophysical Research: Space Physics, 119, 2917 – 2932. https://doi.org/10.1002/2013ja019567
dc.identifier.citedreferenceKorth, H., Tsyganenko, N. A., Johnson, C. L., Philpott, L. C., Anderson, B. J., Al Asad, M. M., et al. ( 2015 ). Modular model for Mercury’s magnetospheric magnetic field confined within the average observed magnetopause. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 4503 – 4518. https://doi.org/10.1002/2015JA021022
dc.identifier.citedreferenceLawrence, D. J., Anderson, B. J., Baker, D. N., Feldman, W. C., Ho, G. C., Korth, H., et al. ( 2015 ). Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma‐Ray and Neutron Spectrometer. Journal of Geophysical Research: Space Physics, 120 ( 4 ), 2851 – 2876. https://doi.org/10.1002/2014JA020792
dc.identifier.citedreferenceLindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A., & Yeoman, T. K. ( 2016 ). MESSENGER X‐ray observations of magnetosphere‐surface interaction on the nightside of Mercury. Planetary and Space Science, 125, 72 – 79. https://doi.org/10.1016/j.pss.2016.03.005
dc.identifier.citedreferenceMcAdams, J. V., Farquhar, R. W., Taylor, A. H., & Williams, B. G. ( 2007 ). MESSENGER mission design and navigation. Space Science Reviews, 131 ( 1–4 ), 219 – 246. https://doi.org/10.1007/s11214-007-9162-x
dc.identifier.citedreferenceMilillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. ( 2020 ). Investigating Mercury’s environment with the two‐spacecraft BepiColombo mission. Space Science Reviews, 216 ( 5 ), 93. https://doi.org/10.1007/s11214-020-00712-8
dc.identifier.citedreferenceNittler, L. R., Frank, E. A., Weider, S. Z., Crapster‐Pregont, E., Vorburger, A., Starr, R. D., & Solomon, S. C. ( 2020 ). Global major‐element maps of Mercury from four years of MESSENGER X‐Ray Spectrometer observations. Icarus, 345, 113716. https://doi.org/10.1016/j.icarus.2020.113716
dc.identifier.citedreferenceOrsini, S., Livi, S. A., Lichtenegger, H., Barabash, S., Milillo, A., De Angelis, E., et al. ( 2021 ). Serena: Particle instrument suite for determining the sun‐mercury interaction from BepiColombo. Space Science Reviews, 217 ( 1 ), 11. https://doi.org/10.1007/s11214-020-00787-3
dc.identifier.citedreferenceQuémerais, E., Chaufray, J. Y., Koutroumpa, D., Leblanc, F., Reberac, A., Lustrement, B., et al. ( 2020 ). PHEBUS on Bepi‐Colombo: Post‐launch update and instrument performance. Space Science Reviews, 216 ( 4 ), 67. https://doi.org/10.1007/s11214-020-00695-6
dc.identifier.citedreferenceSchriver, D., Trávníček, P., Ashour‐Abdalla, M., Richard, R. L., Hellinger, P., Slavin, J. A., et al. ( 2011b ). Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron‐stimulated desorption. Planetary and Space Science, 59, 2026 – 2036. https://doi.org/10.1016/j.pss.2011.03.008
dc.identifier.citedreferenceSchriver, D., Trávníček, P. M., Anderson, B. J., Ashour‐Abdalla, M., Baker, D. N., Benna, M., et al. ( 2011a ). Quasi‐trapped ion and electron populations at Mercury. Geophysical Research Letters, 38. https://doi.org/10.1029/2011GL049629
dc.identifier.citedreferenceSimpson, J. A., Eraker, J. H., Lamport, J. E., & Walpole, P. H. ( 1974 ). Electrons and protons accelerated in Mercury’s magnetic field. Science, 185 ( 4146 ), 160 – 166. https://doi.org/10.1126/science.185.4146.160
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., et al. ( 2008 ). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321, 85 – 89. https://doi.org/10.1126/science.1159040
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Gershman, D. J., Ho, G. C., Imber, S. M., Krimigis, S. M., & Sundberg, T. ( 2018 ). Mercury’s dynamic magnetosphere. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (pp. 461 – 496 ). Cambridge University Press. https://doi.org/10.1017/9781316650684.018
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131, 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceSolomon, S. C., Nittler, L. R., & Anderson, B. J. ( 2018 ). Mercury: The view after MESSENGER. Cambridge University Press.
dc.identifier.citedreferenceStarr, R. D. ( 2010 ). MESSENGER E/V/H XRS calibrated (CDR) spectra v1.0. NASA Planetary Data System. https://doi.org/10.17189/1518576
dc.identifier.citedreferenceStarr, R. D., Schriver, D., Nittler, L. R., Weider, S. Z., Byrne, P. K., Ho, G. C., et al. ( 2012 ). MESSENGER detection of electron‐induced X‐ray fluorescence from Mercury’s surface. Journal of Geophysical Research, 117, E00L02. https://doi.org/10.1029/2012JE004118
dc.identifier.citedreferenceWalsh, B. M., Ryou, A. S., Sibeck, D. G., & Alexeev, I. I. ( 2014 ). Energetic particle dynamics in Mercury’s magnetosphere. Journal of Geophysical Research Space Physics, 118, 1992 – 1999. https://doi.org/10.1002/jgra.50266
dc.identifier.citedreferenceWeider, S. Z., Nittler, L. R., Starr, R. D., Crapster‐Pregont, E. J., Peplowski, P. N., Denevi, B. W., et al. ( 2015 ). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X‐Ray Spectrometer. Earth and Planetary Science Letters, 416 ( 0 ), 109 – 120. https://doi.org/10.1016/j.epsl.2015.01.023
dc.identifier.citedreferenceYoshikawa, I., Korablev, O., Kameda, S., Rees, D., Nozawa, H., Okano, S., et al. ( 2010 ). The Mercury sodium atmospheric spectral imager for the MMO spacecraft of Bepi‐Colombo. Planetary and Space Science, 58 ( 1 ), 224 – 237. https://doi.org/10.1016/j.pss.2008.07.008
dc.identifier.citedreferenceArmstrong, T. P., Krimigis, S. M., & Lanzerotti, L. J. ( 1975 ). A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury. Journal of Geophysical Research, 80 ( 28 ), 4015 – 4017. https://doi.org/10.1029/JA080i028p04015
dc.identifier.citedreferenceBaker, D. N., Borovsky, J. E., Burns, J. O., Gisler, G. R., & Zeilik, M. ( 1987 ). Possible calorimetric effects at mercury due to solar wind‐magnetosphere interactions, Journal of Geophysical Research, 92 ( A5 ), 4707 – 4712. https://doi.org/10.1029/JA092iA05p04707
dc.identifier.citedreferenceBaker, D. N., Dewey, R., Anderson, B. J., Ho, G., Korth, H., Krimigis, S., et al. ( 2015 ). Energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with multi‐instrument observations from Messenger. Geophysical Research Abstracts, 17, 2517.
dc.identifier.citedreferenceBannister, N. P., Fraser, G. W., Lindsay, S. T., Martindale, A., & Talboys, D. L. ( 2012 ). Astrophysical objects observed by the MESSENGER X‐ray spectrometer during Mercury flybys. Planetary and Space Science, 69, 28 – 39. https://doi.org/10.1016/j.pss.2012.05.006
dc.identifier.citedreferenceBunce, E. J., Martindale, A., Lindsay, S., Muinonen, K., Rothery, D. A., Pearson, J., et al. ( 2020 ). The BepiColombo mercury imaging X‐ray spectrometer: Science goals, instrument performance and operations. Space Science Reviews, 216 ( 8 ), 126. https://doi.org/10.1007/s11214-020-00750-2
dc.identifier.citedreferenceBurger, M. H., Killen, R. M., McClintock, W. E., Merkel, A. W., Vervack, R. J., Jr, Cassidy, T. A., & Sarantos, M. ( 2014 ). Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 51 – 58. https://doi.org/10.1016/j.icarus.2014.04.049
dc.identifier.citedreferenceDimeo, R. M. ( 2004 ). In get_peak_pos.pro NIST center for neutron research. NIST Center for Neutron Research.
dc.identifier.citedreferenceDomingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., et al. ( 2014 ). Mercury’s weather‐Beaten surface: Understanding mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181 ( 1 ), 121 – 214. https://doi.org/10.1007/s11214-014-0039-5
dc.identifier.citedreferenceGrande, M. ( 1997 ). Investigation of magnetospheric interactions with the Hermean surface. Advances in Space Research, 19 ( 10 ), 1609 – 1614. https://doi.org/10.1016/S0273-1177(97)00374-8
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.