Show simple item record

Childhood nutrient intakes are differentially associated with hepatic and abdominal fats in adolescence: The EPOCH study

dc.contributor.authorCohen, Catherine C.
dc.contributor.authorPerng, Wei
dc.contributor.authorBekelman, Traci A.
dc.contributor.authorRingham, Brandy M.
dc.contributor.authorScherzinger, Ann
dc.contributor.authorShankar, Kartik
dc.contributor.authorDabelea, Dana
dc.date.accessioned2022-02-07T20:24:11Z
dc.date.available2023-03-07 15:24:09en
dc.date.available2022-02-07T20:24:11Z
dc.date.issued2022-02
dc.identifier.citationCohen, Catherine C.; Perng, Wei; Bekelman, Traci A.; Ringham, Brandy M.; Scherzinger, Ann; Shankar, Kartik; Dabelea, Dana (2022). "Childhood nutrient intakes are differentially associated with hepatic and abdominal fats in adolescence: The EPOCH study." Obesity (2): 460-471.
dc.identifier.issn1930-7381
dc.identifier.issn1930-739X
dc.identifier.urihttps://hdl.handle.net/2027.42/171573
dc.description.abstractObjectiveThe aim of this study was to examine whether nutrient intakes in childhood are associated with abdominal and hepatic fat depots later in adolescence.MethodsUsing data from 302 participants in the longitudinal Exploring Perinatal Outcomes among CHildren (EPOCH) study, energy partition and nutrient density models were constructed to examine associations of nutrient intakes in childhood (~10 years of age), assessed by food frequency questionnaire, with abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and hepatic fat in adolescence (~16 years of age).ResultsIn energy partition models (energy intake not held constant), total, monounsaturated, and polyunsaturated fat intakes in childhood were associated with higher SAT in adolescence (β [95% CI]: 8.5 [0.1‐17.1], 25.1 [2.1‐48.1], and 59.7 [16.1‐103.3] mm2 per 100 kcal/d), higher starch intake was associated with log‐hepatic fat (back‐transformed β [95% CI]: 1.07 [1.01‐1.15] per 100 kcal/d), and, in boys only, higher animal protein intake was associated with VAT (β [95% CI]: 5.3 [0.3‐10.3] mm2 per 100 kcal/d). Most associations were unchanged when adjusted for energy intake in nutrient density models.ConclusionsChildhood nutrient intakes were differentially associated with adolescent body fats; specifically, unsaturated fat intake predicted abdominal SAT, animal protein intake predicted VAT, and starch intake predicted hepatic fat. These nutrient intakes may, therefore, be targets for intervention studies aiming to modify adolescent body fat distribution.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.titleChildhood nutrient intakes are differentially associated with hepatic and abdominal fats in adolescence: The EPOCH study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171573/1/oby23344_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171573/2/oby23344.pdf
dc.identifier.doi10.1002/oby.23344
dc.identifier.sourceObesity
dc.identifier.citedreferenceSimopoulos AP. An increase in the omega‐6/omega‐3 fatty acid ratio increases the risk for obesity. Nutrients. 2016; 8: 128. doi: 10.3390/nu8030128
dc.identifier.citedreferenceBlock G, Murphy M, Roullet J, Wakimoto P, Crawford P, Block T. Pilot validation of a FFQ for children 8–10 years. Fourth International Conference on Dietary Assessment Methods, Tuscon, Arizona, USA, 17‐20 September 2000. University of Arizona College of Public Health; 2000.
dc.identifier.citedreferenceMayer‐Davis EJ, Nichols M, Liese AD, et al. Dietary intake among youth with diabetes: the SEARCH for Diabetes in Youth Study. J Am Diet Assoc. 2006; 106: 689 ‐ 697.
dc.identifier.citedreferenceBekelman TA, Ringham BM, Sauder KA, et al. Adherence to index‐based dietary patterns in childhood and BMI trajectory during the transition to adolescence: the EPOCH study. Int J Obes (Lond). 2021; 45 ( 11 ): 2439 ‐ 2446.
dc.identifier.citedreferenceBlack AE. Critical evaluation of energy intake using the Goldberg cut‐off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord. 2000; 24: 1119 ‐ 1130.
dc.identifier.citedreferenceGoldberg GR, Black AE, Jebb SA, et al. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut‐off limits to identify under‐recording. Eur J Clin Nutr. 1991; 45: 569 ‐ 581.
dc.identifier.citedreferenceSmits LP, Coolen BF, Panno MD, et al. Noninvasive differentiation between hepatic steatosis and steatohepatitis with MR imaging enhanced with USPIOs in patients with nonalcoholic fatty liver disease: a proof‐of‐concept study. Radiology. 2016; 278: 782 ‐ 791.
dc.identifier.citedreferencede Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school‐aged children and adolescents. Bull World Health Organ. 2007; 85: 660 ‐ 667.
dc.identifier.citedreferenceWeston AT, Petosa R, Pate RR. Validation of an instrument for measurement of physical activity in youth. Med Sci Sports Exerc. 1997; 29: 138 ‐ 143.
dc.identifier.citedreferencePate RR, Ross R, Dowda M, Trost SG, Sirard JR. Validation of a 3‐day physical activity recall instrument in female youth. Pediatr Exerc Sci. 2003; 15: 257 ‐ 265.
dc.identifier.citedreferenceHarris C, Buyken A, von Berg A, et al. Prospective associations of meat consumption during childhood with measures of body composition during adolescence: results from the GINIplus and LISAplus birth cohorts. Nutr J. 2016; 15: 101. doi: 10.1186/s12937‐016‐0222‐5
dc.identifier.citedreferenceSegovia‐Siapco G, Khayef G, Pribis P, Oda K, Haddad E, Sabaté J. Animal protein intake is associated with general adiposity in adolescents: the teen food and development study. Nutrients. 2019; 12: 110. doi: 10.3390/nu12010110
dc.identifier.citedreferenceAlkerwi A, Sauvageot N, Buckley JD, et al. The potential impact of animal protein intake on global and abdominal obesity: evidence from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV‐LUX) study. Public Health Nutr. 2015; 18: 1831 ‐ 1838.
dc.identifier.citedreferenceWang Y, Beydoun MA. Meat consumption is associated with obesity and central obesity among US adults. Int J Obes (Lond). 2009; 33: 621 ‐ 628.
dc.identifier.citedreferenceHoppe C, Udam TR, Lauritzen L, Mølgaard C, Juul A, Michaelsen KF. Animal protein intake, serum insulin‐like growth factor I, and growth in healthy 2.5‐y‐old Danish children. Am J Clin Nutr. 2004; 80: 447 ‐ 452.
dc.identifier.citedreferenceLeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin‐like growth factor 1. Nat Clin Pract Endocrinol Metab. 2007; 3: 302 ‐ 310.
dc.identifier.citedreferenceBerryman DE, Glad CAM, List EO, Johannsson G. The GH/IGF‐1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013; 9: 346 ‐ 356.
dc.identifier.citedreferenceParikh S, Pollock NK, Bhagatwala J, et al. Adolescent fiber consumption is associated with visceral fat and inflammatory markers. J Clin Endocrinol Metab. 2012; 97: E1451 ‐ E1457.
dc.identifier.citedreferenceMollard RC, Senechal M, MacIntosh AC, et al. Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. Am J Clin Nutr. 2014; 99: 804 ‐ 812.
dc.identifier.citedreferenceWehling H, Lusher J. People with a body mass index ⩾30 under‐report their dietary intake: a systematic review. J Health Psychol. 2019; 24: 2042 ‐ 2059.
dc.identifier.citedreferenceThompson FE, Subar AF. Dietary assessment methodology. In: Coulston AM, Boushey CJ, Ferruzzi MG, Delahanty L, eds. Nutrition in the Prevention and Treatment of Disease. 4th ed. Academic Press; 2017: 5 ‐ 48.
dc.identifier.citedreferenceFreedman LS, Schatzkin A, Midthune D, Kipnis V. Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst. 2011; 103: 1086 ‐ 1092.
dc.identifier.citedreferenceRothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990; 1: 43 ‐ 46.
dc.identifier.citedreferencePalmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015; 402: 113 ‐ 119.
dc.identifier.citedreferenceOgden CL, Carroll MD, Lawman HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016; 315: 2292 ‐ 2299.
dc.identifier.citedreferenceWeiss R, Bremer AA, Lustig RH. What is metabolic syndrome, and why are children getting it? Ann N Y Acad Sci. 2013; 1281: 123 ‐ 140.
dc.identifier.citedreferenceWeiss R, Taksali SE, Tamborlane WV, Burgert TS, Savoye M, Caprio S. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care. 2005; 28: 902 ‐ 909.
dc.identifier.citedreferenceCali AM, Caprio S. Ectopic fat deposition and the metabolic syndrome in obese children and adolescents. Horm Res. 2009; 71: 2 ‐ 7.
dc.identifier.citedreferenceCaprio S, Perry R, Kursawe R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation. Gastroenterology. 2017; 152: 1638 ‐ 1646.
dc.identifier.citedreferenceD’Adamo E, Cali AMG, Weiss R, et al. Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents. Diabetes Care. 2010; 33: 1817 ‐ 1822.
dc.identifier.citedreferenceMoran A, Jacobs DR, Steinberger J, et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females. Circulation. 2008; 117: 2361 ‐ 2368.
dc.identifier.citedreferenceWriting Group for the SEARCH for Diabetes in Youth Study Group, Dabelea D, Bell RA, et al. Incidence of diabetes in youth in the United States. JAMA. 2007; 297 ( 24 ): 2716 ‐ 2724. doi: 10.1001/jama.297.24.2716
dc.identifier.citedreferenceSahota AK, Shapiro WL, Newton KP, Kim ST, Chung J, Schwimmer JB. Incidence of nonalcoholic fatty liver disease in children: 2009‐2018. Pediatrics. 2020; 146: e20200771. doi: 10.1542/peds.2020‐0771
dc.identifier.citedreferenceCuthbertson DJ, Steele T, Wilding JP, et al. What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications? Int J Obes (Lond). 2017; 41 ( 6 ): 853 ‐ 865.
dc.identifier.citedreferenceFischer K, Pick JA, Moewes D, Nöthlings U. Qualitative aspects of diet affecting visceral and subcutaneous abdominal adipose tissue: a systematic review of observational and controlled intervention studies. Nutr Rev. 2015; 73: 191 ‐ 215.
dc.identifier.citedreferenceYki‐Järvinen H, Luukkonen PK, Hodson L, Moore JB. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2021; 18 ( 11 ): 770 ‐ 786.
dc.identifier.citedreferenceAhn J, Jun DW, Lee HY, Moon JH. Critical appraisal for low‐carbohydrate diet in nonalcoholic fatty liver disease: review and meta‐analyses. Clin Nutr. 2019; 38: 2023 ‐ 2030.
dc.identifier.citedreferenceSchwarz J‐M, Noworolski SM, Erkin‐Cakmak A, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017; 153: 743 ‐ 752.
dc.identifier.citedreferenceSchwimmer JB, Ugalde‐Nicalo P, Welsh JA, et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA. 2019; 321: 256 ‐ 265.
dc.identifier.citedreferenceWillett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997; 65: 1220S ‐ 1228S; discussion 1229S‐1231S.
dc.identifier.citedreferenceVarlamov O, Bethea CL, Roberts CT. Sex‐specific differences in lipid and glucose metabolism. Front Endocrinol. 2015; 5. doi: 10.3389/fendo.2014.00241
dc.identifier.citedreferenceCrume TL, Ogden L, West NA, et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia. 2011; 54: 87 ‐ 92.
dc.identifier.citedreferenceBellatorre A, Scherzinger A, Stamm E, Martinez M, Ringham B, Dabelea D. Fetal overnutrition and adolescent hepatic fat fraction: the exploring perinatal outcomes in children study. J Pediatr. 2018; 192: 165 ‐ 170.e161.
dc.identifier.citedreferenceWillett WC. Overview of nutritional epidemiology. In: Willett WC, ed. Nutritional Epidemiology. Oxford University Press; 1998.
dc.identifier.citedreferenceCullen KW, Watson K, Zakeri I. Relative reliability and validity of the Block Kids Questionnaire among youth aged 10 to 17 years. J Am Diet Assoc. 2008; 108: 862 ‐ 866.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.