Show simple item record

Symmetric “Double Spiro” Wide Energy Gap Hosts for Blue Phosphorescent OLED Devices

dc.contributor.authorMa, Jie
dc.contributor.authorIdris, Muazzam
dc.contributor.authorLi, Tian Y.
dc.contributor.authorRavinson, Daniel S. M.
dc.contributor.authorFleetham, Tyler
dc.contributor.authorKim, Jongchan
dc.contributor.authorDjurovich, Peter I.
dc.contributor.authorForrest, Stephen R.
dc.contributor.authorThompson, Mark E.
dc.date.accessioned2022-02-07T20:24:48Z
dc.date.available2023-02-07 15:24:46en
dc.date.available2022-02-07T20:24:48Z
dc.date.issued2022-01
dc.identifier.citationMa, Jie; Idris, Muazzam; Li, Tian Y.; Ravinson, Daniel S. M.; Fleetham, Tyler; Kim, Jongchan; Djurovich, Peter I.; Forrest, Stephen R.; Thompson, Mark E. (2022). "Symmetric “Double Spiro” Wide Energy Gap Hosts for Blue Phosphorescent OLED Devices." Advanced Optical Materials 10(2): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/171586
dc.description.abstractWide energy gap materials dispiro[fluorene‐9,9′‐anthracene‐10′,9″‐fluorene] (SAS) and dispiro[xanthene‐9,9′‐anthracene‐10′,9″‐xanthene] (XAX) containing double spiro–carbons, are introduced as hosts for blue phosphorescent organic light‐emitting diodes (PHOLEDs). Both SAS and XAX are free of heteroatomic exocyclic bonds, which are implicated in limiting the stability of blue PHOLEDs. The materials are synthesized in gram‐scale quantities through short and efficient paths. They have large energy gaps (≥5.0 eV) between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and correspondingly have high triplet energies in solid state (ET ≈ 3.0 eV). Analysis of devices using SAS and XAX as host materials with the blue phosphorescent dopant fac‐tris(N,N‐di‐p‐tolyl‐pyrizinoimidazol‐2‐yl)iridium(III) (Ir(tpz)3), shows that charges are transported and trapped by the dopant, which subsequently forms excitons directly on the phosphor. As a result, luminescence quenching pathways are suppressed which leads to blue phosphorescent devices with high (≈18%) external quantum efficiency. Thus, SAS and XAX serve as promising host materials, with high triplet energies suitable for blue PHOLEDs.Spiro‐containing host materials dispiro[fluorene‐9,9″‐anthracene‐10″,9″″‐fluorene] (SAS) and dispiro[xanthene‐9,9″‐anthracene‐10″,9″″‐xanthene] (XAX), composed exclusively with C–C or C–O bonds, have large energy gaps and high triplet energies along with excellent thermal stability and performance in blue phosphorescent organic light‐emitting diodes (PHOLEDs).
dc.publisherM. Dekker
dc.publisherWiley Periodicals, Inc.
dc.subject.otherblue phosphorescent organic light‐emitting diodes
dc.subject.otherhigh triplet energy
dc.subject.otherhost materials
dc.subject.otherspiro‐containing materials
dc.subject.otherwide energy gap
dc.titleSymmetric “Double Spiro” Wide Energy Gap Hosts for Blue Phosphorescent OLED Devices
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171586/1/adom202101530-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171586/2/adom202101530_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171586/3/adom202101530.pdf
dc.identifier.doi10.1002/adom.202101530
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceS.‐C. Lo, C. P. Shipley, R. N. Bera, R. E. Harding, A. R. Cowley, P. L. Burn, I. D. W. Samuel, Chem. Mater. 2006, 18, 5119.
dc.identifier.citedreferenceD. Y. Kondakov, J. Appl. Phys. 2007, 102, 114504.
dc.identifier.citedreferenceN. C. Giebink, B. W. D’Andrade, M. S. Weaver, P. B. Mackenzie, J. J. Brown, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2008, 103, 044509.
dc.identifier.citedreferenceK. S. Yook, J. Y. Lee, Adv. Mater. 2012, 24, 3169.
dc.identifier.citedreferenceW. Song, J. Y. Lee, Adv. Opt. Mater. 2017, 5, 1600901.
dc.identifier.citedreferenceJ.‐H. Lee, C.‐H. Chen, P.‐H. Lee, H.‐Y. Lin, M.‐k. Leung, T.‐L. Chiu, C.‐F. Lin, J. Mater. Chem. C 2019, 7, 5874.
dc.identifier.citedreferenceY. Wang, J. H. Yun, L. Wang, J. Y. Lee, Adv. Funct. Mater. 2021, 31, 2008332.
dc.identifier.citedreferenceC. Poriel, J. Rault‐Berthelot, Adv. Funct. Mater. 2021, 31, 2010547.
dc.identifier.citedreferenceR. J. Holmes, S. R. Forrest, Y.‐J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, Appl. Phys. Lett. 2003, 82, 2422.
dc.identifier.citedreferenceC. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001, 90, 5048.
dc.identifier.citedreferenceD. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 74, 442.
dc.identifier.citedreferenceR. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, Appl. Phys. Lett. 2003, 83, 3818.
dc.identifier.citedreferenceS. Schmidbauer, A. Hohenleutner, B. König, Adv. Mater. 2013, 25, 2114.
dc.identifier.citedreferenceD. Y. Kondakov, W. C. Lenhart, W. F. Nichols, J. Appl. Phys. 2007, 101, 024512.
dc.identifier.citedreferenceS. Tokito, H. Tanaka, K. Noda, A. Okada, Y. Taga, Appl. Phys. Lett. 1997, 70, 1929.
dc.identifier.citedreferenceV. I. Adamovich, M. S. Weaver, R. C. Kwong, J. J. Brown, Curr. Appl. Phys. 2005, 5, 15.
dc.identifier.citedreferenceS. L. Murov, Handbook of Photochemistry, M. Dekker, New York 1993.
dc.identifier.citedreferenceH.‐H. Chou, C.‐H. Cheng, Adv. Mater. 2010, 22, 2468.
dc.identifier.citedreferenceR.‐F. Chen, G.‐H. Xie, Y. Zhao, S.‐L. Zhang, J. Yin, S.‐Y. Liu, W. Huang, Org. Electron. 2011, 12, 1619.
dc.identifier.citedreferenceS. P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice‐Hall, Inc., Englewood Cliffs, NJ 1969.
dc.identifier.citedreferenceR. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, M. E. Thompson, J. Brooks, Y.‐J. Tung, B. W. D’Andrade, M. S. Weaver, R. C. Kwong, J. J. Brown, Appl. Phys. Lett. 2005, 87, 243507.
dc.identifier.citedreferenceJ. Lee, H.‐F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson, S. R. Forrest, Nat. Mater. 2016, 15, 92.
dc.identifier.citedreferenceK.‐Y. Lu, H.‐H. Chou, C.‐H. Hsieh, Y.‐H. O. Yang, H.‐R. Tsai, H.‐Y. Tsai, L.‐C. Hsu, C.‐Y. Chen, I.‐C. Chen, C.‐H. Cheng, Adv. Mater. 2011, 23, 4933.
dc.identifier.citedreferenceA. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377.
dc.identifier.citedreferenceS. Kim, H. J. Bae, S. Park, W. Kim, J. Kim, J. S. Kim, Y. Jung, S. Sul, S.‐G. Ihn, C. Noh, S. Kim, Y. You, Nat. Commun. 2018, 9, 1211.
dc.identifier.citedreferenceN. Lin, J. Qiao, L. Duan, L. Wang, Y. Qiu, J. Phys. Chem. C 2014, 118, 7569.
dc.identifier.citedreferenceZ. Jiang, H. Yao, Z. Zhang, C. Yang, Z. Liu, Y. Tao, J. Qin, D. Ma, Org. Lett. 2009, 11, 2607.
dc.identifier.citedreferenceL. J. Sicard, H.‐C. Li, Q. Wang, X.‐Y. Liu, O. Jeannin, J. Rault‐Berthelot, L.‐S. Liao, Z.‐Q. Jiang, C. Poriel, Angew. Chem., Int. Ed. 2019, 58, 3848.
dc.identifier.citedreferenceK.‐T. Wong, Y.‐L. Liao, Y.‐T. Lin, H.‐C. Su, C.‐c. Wu, Org. Lett. 2005, 7, 5131.
dc.identifier.citedreferenceQ. Wang, F. Lucas, C. Quinton, Y.‐K. Qu, J. Rault‐Berthelot, O. Jeannin, S.‐Y. Yang, F.‐C. Kong, S. Kumar, L.‐S. Liao, C. Poriel, Z.‐Q. Jiang, Chem. Sci. 2020, 11, 4887.
dc.identifier.citedreferenceY. Luo, Z. Liu, G. Yang, T. Wang, Z. Bin, J. Lan, D. Wu, J. You, Angew. Chem., Int. Ed. 2021, 60, 18852.
dc.identifier.citedreferenceC.‐ c. Wu, T.‐L. Liu, W.‐Y. Hung, Y.‐T. Lin, K.‐T. Wong, R.‐T. Chen, Y.‐M. Chen, Y.‐Y. Chien, J. Am. Chem. Soc. 2003, 125, 3710.
dc.identifier.citedreferenceW. Wei, P. I. Djurovich, M. E. Thompson, Chem. Mater. 2010, 22, 1724.
dc.identifier.citedreferenceS. C. Moldoveanu, in Analytical Pyrolysis of Natural Organic Polymers, 2n ed., Vol. 20, (Ed: S. C. Moldoveanu ), Elsevier, Amsterdam 2021, p. 3.
dc.identifier.citedreferenceX. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Chem. Mater. 2004, 16, 4743.
dc.identifier.citedreferenceJ.‐J. Lin, W.‐S. Liao, H.‐J. Huang, F.‐I. Wu, C.‐H. Cheng, Adv. Funct. Mater. 2008, 18, 485.
dc.identifier.citedreferenceS. Liu, D. Xia, M. Baumgarten, ChemPlusChem 2021, 86, 36.
dc.identifier.citedreferenceJ. Sworakowski, J. Lipiński, K. Janus, Org. Electron. 2016, 33, 300.
dc.identifier.citedreferenceM. Idris, S. C. Kapper, A. C. Tadle, T. Batagoda, D. S. Muthiah Ravinson, O. Abimbola, P. I. Djurovich, J. Kim, C. Coburn, S. R. Forrest, M. E. Thompson, Adv. Opt. Mater. 2021, 9, 2001994.
dc.identifier.citedreferenceT. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard, M. E. Thompson, J. Am. Chem. Soc. 2009, 131, 9813.
dc.identifier.citedreferenceX. Zhou, B. J. Powell, Inorg. Chem. 2018, 57, 8881.
dc.identifier.citedreferenceC. Tonnelé, M. Stroet, B. Caron, A. J. Clulow, R. C. R. Nagiri, A. K. Malde, P. L. Burn, I. R. Gentle, A. E. Mark, B. J. Powell, Angew. Chem., Int. Ed. 2017, 56, 8402.
dc.identifier.citedreferenceM. Gao, T. Lee, P. L. Burn, A. E. Mark, A. Pivrikas, P. E. Shaw, Adv. Funct. Mater. 2020, 30, 1907942.
dc.identifier.citedreferenceR. Coehoorn, P. A. Bobbert, Phys. Status Solidi A 2012, 209, 2354.
dc.identifier.citedreferenceR. G. Clarkson, M. Gomberg, J. Am. Chem. Soc. 1930, 52, 2881.
dc.identifier.citedreferenceA. Vlček, S. Záliš, Coord. Chem. Rev. 2007, 251, 258.
dc.identifier.citedreferenceS. Arroliga‐Rocha, D. Escudero, Inorg. Chem. 2018, 57, 12106.
dc.identifier.citedreferenceC. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
dc.identifier.citedreferenceM. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4.
dc.identifier.citedreferenceM. Hack, M. S. Weaver, J. J. Brown, SID Symp. Dig. Tech. Pap. 2017, 48, 187.
dc.identifier.citedreferenceC. Murawski, K. Leo, M. C. Gather, Adv. Mater. 2013, 25, 6801.
dc.identifier.citedreferenceS. C. Xia, R. C. Kwong, V. I. Adamovich, M. S. Weaver, J. J. Brown, IEEE 45th Annual International Reliability Physics Symposium 2007, 253.
dc.identifier.citedreferenceF. So, D. Kondakov, Adv. Mater. 2010, 22, 3762.
dc.identifier.citedreferenceC. Coburn, S. R. Forrest, Phys. Rev. Appl. 2017, 7, 041002.
dc.identifier.citedreferenceA. van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, K. Brunner, J. Am. Chem. Soc. 2004, 126, 7718.
dc.identifier.citedreferenceH. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown, C. Adachi, Chem. Mater. 2004, 16, 1285.
dc.identifier.citedreferenceL. Zeng, T. Y. H. Lee, P. B. Merkel, S. H. Chen, J. Mater. Chem. 2009, 19, 8772.
dc.identifier.citedreferenceM. M. Rothmann, S. Haneder, E. Da Como, C. Lennartz, C. Schildknecht, P. Strohriegl, Chem. Mater. 2010, 22, 2403.
dc.identifier.citedreferenceK. S. Son, M. Yahiro, T. Imai, H. Yoshizaki, C. Adachi, Chem. Mater. 2008, 20, 4439.
dc.identifier.citedreferenceS.‐J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691.
dc.identifier.citedreferenceM. K. Kim, J. Kwon, T.‐H. Kwon, J.‐I. Hong, New J. Chem. 2010, 34, 1317.
dc.identifier.citedreferenceM. Idris, C. Coburn, T. Fleetham, J. Milam‐Guerrero, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Mater. Horiz. 2019, 6, 1179.
dc.identifier.citedreferenceJ. Ding, Q. Wang, L. Zhao, D. Ma, L. Wang, X. Jing, F. Wang, J. Mater. Chem. 2010, 20, 8126.
dc.identifier.citedreferenceH. S. Son, C. W. Seo, J. Y. Lee, J. Mater. Chem. 2011, 21, 5638.
dc.identifier.citedreferenceS. O. Jeon, K. S. Yook, C. W. Joo, J. Y. Lee, Adv. Funct. Mater. 2009, 19, 3644.
dc.identifier.citedreferenceF.‐M. Hsu, C.‐H. Chien, P.‐I. Shih, C.‐F. Shu, Chem. Mater. 2009, 21, 1017.
dc.identifier.citedreferenceX. Cai, A. B. Padmaperuma, L. S. Sapochak, P. A. Vecchi, P. E. Burrows, Appl. Phys. Lett. 2008, 92, 083308.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.