Show simple item record

Thermo‐Optically Designed Scalable Photonic Films with High Thermal Conductivity for Subambient and Above‐Ambient Radiative Cooling

dc.contributor.authorLi, Pengli
dc.contributor.authorWang, Ao
dc.contributor.authorFan, Junjie
dc.contributor.authorKang, Qi
dc.contributor.authorJiang, Pingkai
dc.contributor.authorBao, Hua
dc.contributor.authorHuang, Xingyi
dc.date.accessioned2022-02-07T20:24:56Z
dc.date.available2023-02-07 15:24:54en
dc.date.available2022-02-07T20:24:56Z
dc.date.issued2022-01
dc.identifier.citationLi, Pengli; Wang, Ao; Fan, Junjie; Kang, Qi; Jiang, Pingkai; Bao, Hua; Huang, Xingyi (2022). "Thermo‐Optically Designed Scalable Photonic Films with High Thermal Conductivity for Subambient and Above‐Ambient Radiative Cooling." Advanced Functional Materials 32(5): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/171589
dc.description.abstractRadiative cooling is a promising passive cooling technology that reflects sunlight and emits heat to deep space without any energy consumption. Current research mainly focuses on cooling non‐heat‐generating objects (e.g., water) to a deep subambient temperature under sunlight. Toward real‐world applications, however, cooling outdoor objects that generate tremendous heat and have a temperature higher than ambient (e.g., communication base stations and data centres) remains a challenge. Herein, a scalable photonic film is prepared by introducing 2D dielectric nanoplates with high backward scattering efficiency into a polymer using a simulation aided thermo‐optical design. It is demonstrated that the dielectric nanoplates can break the trade‐off between optical reflection and thermal dissipation of conventional radiative coolers. The photonic film exhibits superior solar reflectance (98%) and has a stronger heat dissipation ability compared to the matrix. It exhibits ≈4 °C subambient cooling performance under direct sunlight and ≈9 °C cooling performance at night. Moreover, it also demonstrates remarkable above‐ambient cooling performance by reducing the underlying heater temperature of ≈18 °C in comparison with traditional polymers under sunlight. The dielectric nanoplates reported here provide an innovative strategy for applications related to light management beyond subambient and above‐ambient radiative cooling.A thermo‐optically designed photonic film, which accounts for both subambient and above‐ambient radiative cooling is prepared. It consists of a visibly transparent polymer encapsulating 2D dielectric nanoplates. The nanoplates substantially improve all the advantageous properties of the photonic film that endow it with a record high solar reflectance (98%), a strong thermal emittance (90%), and an unprecedented heat dissipation ability.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherlight scattering
dc.subject.otheroptical simulation
dc.subject.otherradiative cooling
dc.subject.othersolar reflection
dc.subject.otherthermal management
dc.subject.other2D nanoplates
dc.titleThermo‐Optically Designed Scalable Photonic Films with High Thermal Conductivity for Subambient and Above‐Ambient Radiative Cooling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171589/1/adfm202109542_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171589/2/adfm202109542-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171589/3/adfm202109542.pdf
dc.identifier.doi10.1002/adfm.202109542
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferencea) G. Cassabois, P. Valvin, B. Gil, Nat. Photonics 2016, 10, 262; b) Q. Li, G. Zhang, F. Liu, K. Han, M. R. Gadinski, C. Xiong, Q. Wang, Energy Environ. Sci. 2015, 8, 922.
dc.identifier.citedreferencea) T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, L. Hu, Science 2019, 364, 760; b) Y. Zhou, H. M. Song, J. W. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. F. Yu, B. Ooi, Q. Q. Gan, Nat. Sustain. 2019, 2, 718; c) R. G. Yang, X. B. Yin, Nat. Sustain. 2019, 2, 663; d) X. Li, B. Sun, C. Sui, A. Nandi, H. Fang, Y. Peng, G. Tan, P. C. Hsu, Nat. Commun. 2020, 11, 6101.
dc.identifier.citedreferenceS. Y. Heo, G. J. Lee, D. H. Kim, Y. J. Kim, S. Ishii, M. S. Kim, T. J. Seok, B. J. Lee, H. Lee, Y. M. Song, Sci. Adv. 2020, 6, eabb1906.
dc.identifier.citedreferenceThermal Management Challenges in the 5G Era, https://www.nwengineeringllc.com/article/thermal-management-challenges-in-the-5g-era.php (accessed: May 2021 ).
dc.identifier.citedreferenceCooling, https://www.iea.org/fuels-and-technologies/cooling (accessed: Jan 2021 ).
dc.identifier.citedreferenceN. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, R. Wehner, Science 2015, 349, 298.
dc.identifier.citedreferencea) Z. Chen, L. Zhu, A. Raman, S. Fan, Nat. Commun. 2016, 7, 13729; b) B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, E. N. Wang, Nat. Commun. 2018, 9, 5001.
dc.identifier.citedreferencea) Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Science 2017, 355, 1062; b) J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Science 2018, 362, 315; c) D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, S. Fan, J. Xie, J. Zhu, Nat. Nanotechnol. 2021, 16, 153; d) M. H. Kang, G. J. Lee, J. H. Lee, M. S. Kim, Z. Yan, J. W. Jeong, K. I. Jang, Y. M. Song, Adv. Sci. 2021, 8, 2004885; e) W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li, M. Chen, C. C. Tsai, Z. Shan, N. Yu, Y. Yang, Adv. Funct. Mater. 2021, 31, 2010334; f) W. Gao, Z. Lei, K. Wu, Y. Chen, Adv. Funct. Mater. 2021, 31, 2100535.
dc.identifier.citedreferenceA. S. Fleischer, Science 2020, 370, 783.
dc.identifier.citedreferenceJ. Jaramillo‐Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, C. M. Sotomayor‐Torres, Small 2019, 15, 1905290.
dc.identifier.citedreferencea) A. Leroy, B. Bhatia, C. C. Kelsall, A. Castillejo‐Cuberos, H. M. Di Capua, L. Zhao, L. Zhang, A. M. Guzman, E. N. Wang, Sci. Adv. 2019, 5, eaat9480; b) J. Mandal, Y. Yang, N. F. Yu, A. P. Raman, Joule 2020, 4, 1350; c) X. Xue, M. Qiu, Y. Li, Q. M. Zhang, S. Li, Z. Yang, C. Feng, W. Zhang, J. G. Dai, D. Lei, W. Jin, L. Xu, T. Zhang, J. Qin, H. Wang, S. Fan, Adv. Mater. 2020, 32, 1906751; d) H. Zhang, K. C. S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, T. Fan, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 14657; e) X. Li, J. Peoples, Z. Huang, Z. Zhao, J. Qiu, X. Ruan, Cell Rep. Phys. Sci. 2020, 1, 100221; f) S. Atiganyanun, J. B. Plumley, S. J. Han, K. Hsu, J. Cytrynbaum, T. L. Peng, S. M. Han, S. E. Han, ACS Photonics 2018, 5, 1181; g) T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, L. Wu, Nat. Commun. 2021, 12, 365; h) Y. C. Peng, J. Chen, A. Y. Song, P. B. Catrysse, P. C. Hsu, L. L. Cai, B. F. Liu, Y. Y. Zhu, G. M. Zhou, D. S. Wu, H. R. Lee, S. H. Fan, Y. Cui, Nat. Sustain. 2018, 1, 105.
dc.identifier.citedreferencea) C. Huang, X. Qian, R. Yang, Mater. Sci. Eng., R 2018, 132, 1; b) X. Y. Huang, C. Y. Zhi, Y. Lin, H. Bao, G. N. Wu, P. K. Jiang, Y. Mai, Mater. Sci. Eng., R 2020, 142, 100577; c) P.‐C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.‐L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, Y. Cui, Sci. Adv. 2017, 3, e1700895.
dc.identifier.citedreferenceL. Cai, A. Y. Song, W. Li, P. C. Hsu, D. Lin, P. B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, Y. Cui, Adv. Mater. 2018, 30, 1802152.
dc.identifier.citedreferencea) P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, Y. Cui, Science 2016, 353, 1019; b) H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cui, Adv. Mater. 2020, 32, 2000870; c) X. Wang, X. H. Liu, Z. Y. Li, H. W. Zhang, Z. W. Yang, H. Zhou, T. X. Fan, Adv. Funct. Mater. 2020, 30, 1907562.
dc.identifier.citedreferenceD. L. Zhao, A. Aili, Y. Zhai, J. T. Lu, D. Kidd, G. Tan, X. B. Yin, R. G. Yang, Joule 2019, 3, 111.
dc.identifier.citedreferenceX. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin, L. Peng, T. Wang, X. Ren, C. Wang, Z. Zhao, C. Wan, H. Fei, L. Wang, J. Zhu, H. Sun, W. Chen, T. Du, B. Deng, G. J. Cheng, I. Shakir, C. Dames, T. S. Fisher, X. Zhang, H. Li, Y. Huang, X. Duan, Science 2019, 363, 723.
dc.identifier.citedreferenceZ. Tong, J. Peoples, X. Li, X. Yang, H. Bao, X. Ruan, arXiv preprint arXiv:2101.05053, 2021.
dc.identifier.citedreferenceN. M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 2007, 50, 21.
dc.identifier.citedreferenceM. P. Diebold, Application of Light Scattering to Coatings: A User’s Guide, Springer, Berlin 2014.
dc.identifier.citedreferenceH. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, X. Ruan, Sol. Energy Mater. Sol. Cells 2017, 168, 78.
dc.identifier.citedreferencea) A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Nature 2014, 515, 540; b) D. L. Zhao, A. Aili, Y. Zhai, S. Y. Xu, G. Tan, X. B. Yin, R. G. Yang, Appl. Phys. Rev. 2019, 6, 021306.
dc.identifier.citedreferenceY. Rah, Y. Jin, S. Kim, K. Yu, Opt. Lett. 2019, 44, 3797.
dc.identifier.citedreferenceB. T. Draine, P. J. Flatau, J. Opt. Soc. Am. A 1994, 11, 1491.
dc.identifier.citedreferenceP. Q. Jiang, X. Qian, R. G. Yang, L. Lindsay, Phys. Rev. Mater. 2018, 2, 8.
dc.identifier.citedreferencea) H. L. Zhu, Y. Y. Li, Z. Q. Fang, J. J. Xu, F. Y. Cao, J. Y. Wan, C. Preston, B. Yang, L. B. Hu, ACS Nano 2014, 8, 3606; b) J. Chen, X. Huang, Y. Zhu, P. Jiang, Adv. Funct. Mater. 2017, 27, 1604754; c) X. Zeng, J. Sun, Y. Yao, R. Sun, J.‐B. Xu, C.‐P. Wong, ACS Nano 2017, 11, 5167.
dc.identifier.citedreferenceJ. Chen, X. Huang, B. Sun, P. Jiang, ACS Nano 2019, 13, 337.
dc.identifier.citedreferenceW. Gan, C. Chen, Z. Wang, Y. Pei, W. Ping, S. Xiao, J. Dai, Y. Yao, S. He, B. Zhao, S. Das, B. Yang, P. B. Sunderland, L. Hu, Adv. Funct. Mater. 2020, 30, 1909196.
dc.identifier.citedreferenceE. A. Goldstein, A. P. Raman, S. H. Fan, Nat. Energy 2017, 2, 7.
dc.identifier.citedreferencea) C. Liu, Y. Wu, B. Wang, C. Y. Zhao, H. Bao, Sol. Energy 2019, 183, 218; b) B. Zhao, M. K. Hu, X. Z. Ao, G. Pei, Appl. Therm. Eng. 2019, 155, 660.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.