Optimizing the Proton Conductivity with the Isokinetic Temperature in Perovskite‐Type Proton Conductors According to Meyer–Neldel Rule
dc.contributor.author | Du, Peng | |
dc.contributor.author | Li, Nana | |
dc.contributor.author | Ling, Xiao | |
dc.contributor.author | Fan, Zhijun | |
dc.contributor.author | Braun, Artur | |
dc.contributor.author | Yang, Wenge | |
dc.contributor.author | Chen, Qianli | |
dc.contributor.author | Yelon, Arthur | |
dc.date.accessioned | 2022-02-07T20:25:30Z | |
dc.date.available | 2023-03-07 15:25:28 | en |
dc.date.available | 2022-02-07T20:25:30Z | |
dc.date.issued | 2022-02 | |
dc.identifier.citation | Du, Peng; Li, Nana; Ling, Xiao; Fan, Zhijun; Braun, Artur; Yang, Wenge; Chen, Qianli; Yelon, Arthur (2022). "Optimizing the Proton Conductivity with the Isokinetic Temperature in Perovskite‐Type Proton Conductors According to Meyer–Neldel Rule." Advanced Energy Materials 12(5): n/a-n/a. | |
dc.identifier.issn | 1614-6832 | |
dc.identifier.issn | 1614-6840 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/171603 | |
dc.description.abstract | Perovskite‐type metal oxides such as Y‐doped BaMO3 (M = Zr/Ce) have drawn considerable attention as proton‐conducting electrolytes for intermediate temperature ceramic electrochemical cells. Improving the proton conductivity at lower temperatures requires a comprehensive understanding of the proton conduction mechanism. By applying high pressure or varying the Ce content of Y‐doped BaMO3, it is demonstrated that the proton conductivity follows the Meyer–Neldel rule (MNR) well. In the Arrhenius plot, the conductivities intersect at an isokinetic temperature, where the proton conductivity is independent of activation energy. Considering the relationship between isokinetic temperature and lattice vibration frequency, a high isokinetic temperature is observed in materials with stiff lattices, consisting of light atoms and small MO bond length. Based on consideration of the MNR, it is suggested that the enhancement of proton conductivity at low temperature can be well achieved by tuning lattice vibration frequency toward a desired isokinetic temperature.In the Arrhenius plot, the conductivities intersect at an isokinetic temperature, where the proton conductivity is independent of activation energy. High isokinetic temperature is observed in materials with stiff lattices. This work suggests that the enhancement of proton conductivity at low temperature can be achieved by tuning lattice vibration frequency toward a desired isokinetic temperature. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | activation energy | |
dc.subject.other | ceramic proton conductors | |
dc.subject.other | isokinetic temperature | |
dc.subject.other | lattice dynamics | |
dc.subject.other | Meyer–Neldel rule | |
dc.subject.other | proton conductivity | |
dc.title | Optimizing the Proton Conductivity with the Isokinetic Temperature in Perovskite‐Type Proton Conductors According to Meyer–Neldel Rule | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171603/1/aenm202102939_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171603/2/aenm202102939-sup-0001-SuppMat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171603/3/aenm202102939.pdf | |
dc.identifier.doi | 10.1002/aenm.202102939 | |
dc.identifier.source | Advanced Energy Materials | |
dc.identifier.citedreference | L. Malavasi, C. A. Fisher, M. S. Islam, Chem. Soc. Rev. 2010, 39, 4370. | |
dc.identifier.citedreference | Y. Gao, A. M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S. H. Bo, Chem. Rev. 2020, 120, 5954. | |
dc.identifier.citedreference | M. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, W. G. Zeier, J. Am. Chem. Soc. 2018, 140, 16330. | |
dc.identifier.citedreference | Q. Chen, T.‐W. Huang, M. Baldini, A. Hushur, V. Pomjakushin, S. Clark, W. L. Mao, M. H. Manghnani, A. Braun, T. Graule, J. Phys. Chem. C 2011, 115, 24021. | |
dc.identifier.citedreference | Q. Chen, A. Braun, S. Yoon, N. Bagdassarov, T. Graule, J. Eur. Ceram. Soc. 2011, 31, 2657. | |
dc.identifier.citedreference | Q. Chen, A. Braun, A. Ovalle, C. D. Savaniu, T. Graule, N. Bagdassarov, Appl. Phys. Lett. 2010, 97, 333. | |
dc.identifier.citedreference | Q. Chen, Doctoral Thesis, ETH Zurich 2012. | |
dc.identifier.citedreference | D. Han, K. Goto, M. Majima, T. Uda, ChemSusChem 2021, 14, 614. | |
dc.identifier.citedreference | T. Famprikis, O. U. Kudu, J. A. Dawson, P. Canepa, F. Fauth, E. Suard, M. Zbiri, D. Dambournet, O. J. Borkiewicz, H. Bouyanfif, S. P. Emge, S. Cretu, J. N. Chotard, C. P. Grey, W. G. Zeier, M. S. Islam, C. Masquelier, J. Am. Chem. Soc. 2020, 142, 18422. | |
dc.identifier.citedreference | Y. Gao, N. Li, Y. Wu, W. Yang, S.‐H. Bo, Adv. Energy Mater. 2021, 11, 2100325. | |
dc.identifier.citedreference | K. Wakamura, Solid State Ionics 2009, 180, 1343. | |
dc.identifier.citedreference | H. Wang, A. Braun, S. P. Cramer, L. B. Gee, Y. Yoda, Crystals 2021, 11, 909. | |
dc.identifier.citedreference | F. M. Draber, C. Ader, J. P. Arnold, S. Eisele, S. Grieshammer, S. Yamaguchi, M. Martin, Nat. Mater. 2020, 19, 338. | |
dc.identifier.citedreference | Y. Jing, N. R. Aluru, J. Power Sources 2020, 445, 227327. | |
dc.identifier.citedreference | K.‐D. Kreuer, A. Fuchs, J. Maier, Solid State Ionics 1995, 77, 157. | |
dc.identifier.citedreference | N. Kuwata, N. Sata, T. Tsurui, H. Yugami, Jpn. J. Appl. Phys. 2005, 44, 8613. | |
dc.identifier.citedreference | A. L. Samgin, Solid State Ionics 2000, 136–137, 291. | |
dc.identifier.citedreference | K. Toyoura, N. S. G. Found, Mater. Sci. Eng., R 2020, 38. | |
dc.identifier.citedreference | C. Chemarin, N. Rosman, T. Pagnier, G. Lucazeau, J. Solid State Chem. 2000, 149, 298. | |
dc.identifier.citedreference | T. Bernges, R. Hanus, B. Wankmiller, K. Imasato, S. Lin, M. Ghidiu, M. Gerlitz, M. Peterlechner, S. Graham, G. Hautier, (Preprint) arXiv:10.33774, v1, submitted: Sept 2021. | |
dc.identifier.citedreference | A. Yelon, MRS Adv. 2017, 2, 425. | |
dc.identifier.citedreference | F. Abdel‐Wahab, A. Yelon, J. Appl. Phys. 2013, 114, 023707. | |
dc.identifier.citedreference | A. G. Jones, Geochem., Geophys., Geosyst. 2014, 15, 2616. | |
dc.identifier.citedreference | S. Duval, P. Holtappels, U. Vogt, U. Stimming, T. Graule, Fuel Cells 2009, 9, 613. | |
dc.identifier.citedreference | A. Fluri, A. Marcolongo, V. Roddatis, A. Wokaun, D. Pergolesi, N. Marzari, T. Lippert, Adv. Sci. 2017, 4, 1700467. | |
dc.identifier.citedreference | X. Li, L. Zhang, Z. Tang, M. Liu, J. Phys. Chem. C 2019, 123, 25611. | |
dc.identifier.citedreference | V. Dimitrov, T. Komatsu, J. Solid State Chem. 2012, 196, 574. | |
dc.identifier.citedreference | H. K. Mao, P. M. Bell, Carnegie Inst. Washington, Year Book 1978, 77, 904. | |
dc.identifier.citedreference | H. Putz, K. Brandenburg, Match! ‐ Phase Analysis using Powder Diffraction, https://www.crystalimpact.de/match (accessed: August 2021 ). | |
dc.identifier.citedreference | S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad, Renewable Sustainable Energy Rev. 2017, 79, 750. | |
dc.identifier.citedreference | K. D. Kreuer, Annu. Rev. Mater. Res. 2003, 33, 333. | |
dc.identifier.citedreference | E. Fabbri, D. Pergolesi, E. Traversa, Chem. Soc. Rev. 2010, 39, 4355. | |
dc.identifier.citedreference | C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, Science 2015, 349, 1321. | |
dc.identifier.citedreference | C. Q. Xia, J. Peng, S. Ponce, J. B. Patel, A. D. Wright, T. W. Crothers, M. Uller Rothmann, J. Borchert, R. L. Milot, H. Kraus, Q. Lin, F. Giustino, L. M. Herz, M. B. Johnston, J. Phys. Chem. Lett. 2021, 12, 3607. | |
dc.identifier.citedreference | W. Zhang, Y. H. Hu, Energy Sci. Eng. 2021, 9, 984. | |
dc.identifier.citedreference | D. Han, X. Liu, T. S. Bjørheim, T. Uda, Adv. Energy Mater. 2021, 11, 2003149. | |
dc.identifier.citedreference | E. Gilardi, E. Fabbri, L. Bi, J. L. M. Rupp, T. Lippert, D. Pergolesi, E. Traversa, J. Phys. Chem. C 2017, 121, 9739. | |
dc.identifier.citedreference | K. Toyoura, T. Fujii, N. Hatada, D. Han, T. Uda, J. Phys. Chem. C 2019, 123, 26823. | |
dc.identifier.citedreference | Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic, J. C. Lucio‐Vega, C. P. Grey, S. M. Haile, Nat. Mater. 2013, 12, 647. | |
dc.identifier.citedreference | D. Z. Sahraoui, T. Mineva, Solid State Ionics 2013, 253, 195. | |
dc.identifier.citedreference | T. Norby, M. Wideroe, R. Glockner, Y. Larring, Dalton Trans. 2004, 3012. | |
dc.identifier.citedreference | D. Noferini, B. Frick, M. M. Koza, M. Karlsson, J. Mater. Chem. A 2018, 6, 7538. | |
dc.identifier.citedreference | A. Braun, Q. Chen, A. Yelon, Chimia 2019, 73, 936. | |
dc.identifier.citedreference | W. Meyer, H. Neldel, Phys. Z. 1937, 38, 1014. | |
dc.identifier.citedreference | W. Meyer, H. Neldel, Z. Tech. Phys. 1937, 18, 588. | |
dc.identifier.citedreference | F. H. Constable, Proc. R. Soc. A 1925, 108, 355. | |
dc.identifier.citedreference | A. G. Jones, Geochem., Geophys., Geosyst. 2014, 15, 337. | |
dc.identifier.citedreference | A. Yelon, B. Movaghar, Phys. Rev. Lett. 1990, 65, 618. | |
dc.identifier.citedreference | A. Yelon, B. Movaghar, R. Crandall, Rep. Prog. Phys. 2006, 69, 1145. | |
dc.identifier.citedreference | S. Muy, R. Schlem, Y. Shao‐Horn, W. G. Zeier, Adv. Energy Mater. 2021, 11, 2002787. | |
dc.identifier.citedreference | Z. Fan, N. Li, P. Du, W. Yang, Q. Chen, J. Phys. Chem. C 2020, 124, 22376. | |
dc.identifier.citedreference | P. Du, Q. Chen, Z. Fan, H. Pan, F. G. Haibach, M. A. Gomez, A. Braun, Commun. Phys. 2020, 3, 200. | |
dc.identifier.citedreference | A. Braun, Q. Chen, Nat. Commun. 2017, 8, 15830. | |
dc.identifier.citedreference | S. Muy, J. Voss, R. Schlem, R. Koerver, S. J. Sedlmaier, F. Maglia, P. Lamp, W. G. Zeier, Y. Shao‐Horn, iScience 2019, 16, 270. | |
dc.identifier.citedreference | S. Muy, J. C. Bachman, L. Giordano, H.‐H. Chang, D. L. Abernathy, D. Bansal, O. Delaire, S. Hori, R. Kanno, F. Maglia, S. Lupart, P. Lamp, Y. Shao‐Horn, Energy Environ. Sci. 2018, 11, 850. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.