Show simple item record

Nanoscale hybrid implant surfaces and Osterix‐mediated osseointegration

dc.contributor.authorMorandini Rodrigues, Laís
dc.contributor.authorLima Zutin, Elis A.
dc.contributor.authorSartori, Elisa M.
dc.contributor.authorRizzante, Fabio A. P.
dc.contributor.authorMendonça, Daniela B. S.
dc.contributor.authorKrebsbach, Paul H.
dc.contributor.authorJepsen, Karl J.
dc.contributor.authorCooper, Lyndon F.
dc.contributor.authorVasconcellos, Luana M. R.
dc.contributor.authorMendonça, Gustavo
dc.date.accessioned2022-02-07T20:25:36Z
dc.date.available2023-04-07 15:25:32en
dc.date.available2022-02-07T20:25:36Z
dc.date.issued2022-03
dc.identifier.citationMorandini Rodrigues, Laís ; Lima Zutin, Elis A.; Sartori, Elisa M.; Rizzante, Fabio A. P.; Mendonça, Daniela B. S. ; Krebsbach, Paul H.; Jepsen, Karl J.; Cooper, Lyndon F.; Vasconcellos, Luana M. R.; Mendonça, Gustavo (2022). "Nanoscale hybrid implant surfaces and Osterix‐mediated osseointegration." Journal of Biomedical Materials Research Part A 110(3): 696-707.
dc.identifier.issn1549-3296
dc.identifier.issn1552-4965
dc.identifier.urihttps://hdl.handle.net/2027.42/171605
dc.description.abstractEndosseous implant surface topography directly affects adherent cell responses following implantation. The aim of this study was to examine the impact of nanoscale topographic modification of titanium implants on Osterix gene expression since this gene has been reported as key factor for bone formation. Titanium implants with smooth and nanoscale topographies were implanted in the femurs of Osterix‐Cherry mice for 1–21 days. Implant integration was evaluated using scanning electron microscopy (SEM) to evaluate cell adhesion on implant surfaces, histology, and nanotomography (NanoCT) to observe and quantify the formed bone‐to‐implant interface, flow cytometry to quantify of Osterix expressing cells in adjacent tissues, and real‐time PCR (qPCR) to quantify the osteoinductive and osteogenic gene expression of the implant‐adherent cells. SEM revealed topography‐dependent adhesion of cells at early timepoints. NanoCT demonstrated greater bone formation at nanoscale implants and interfacial osteogenesis was confirmed histologically at 7 and 14 days for both smooth and nanosurface implants. Flow cytometry revealed greater numbers of Osterix positive cells in femurs implanted with nanoscale versus smooth implants. Compared to smooth surface implants, nanoscale surface adherent cells expressed higher levels of Osterix (Osx), Alkaline phosphatase (Alp), Paired related homeobox (Prx1), Dentin matrix protein 1 (Dmp1), Bone sialoprotein (Bsp), and Osteocalcin (Ocn). In conclusion, nanoscale surface implants demonstrated greater bone formation associated with higher levels of Osterix expression over the 21‐day healing period with direct evidence of surface‐associated gene regulation involving a nanoscale‐mediated osteoinductive pathway that utilizes Osterix to direct adherent cell osteoinduction.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherosseointegration
dc.subject.othersurface topography
dc.subject.othergene expression
dc.subject.otherbone‐implant interface
dc.subject.othernanostructured materials
dc.titleNanoscale hybrid implant surfaces and Osterix‐mediated osseointegration
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171605/1/jbma37323.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171605/2/jbma37323_am.pdf
dc.identifier.doi10.1002/jbm.a.37323
dc.identifier.sourceJournal of Biomedical Materials Research Part A
dc.identifier.citedreferenceLu X, Beck GR Jr, Gilbert LC, et al. Identification of the homeobox protein Prx1 (MHox, Prrx‐1) as a regulator of osterix expression and mediator of tumor necrosis factor alpha action in osteoblast differentiation. J Bone Miner Res. 2011; 26 ( 1 ): 209 ‐ 219.
dc.identifier.citedreferenceThalji GN, Nares S, Cooper LF. Early molecular assessment of osseointegration in humans. Clin Oral Implants Res. 2014; 25 ( 11 ): 1273 ‐ 1285.
dc.identifier.citedreferenceYin C, Zhang Y, Cai Q, et al. Effects of the micro‐nano surface topography of titanium alloy on the biological responses of osteoblast. J Biomed Mater Res A. 2017; 105 ( 3 ): 757 ‐ 769.
dc.identifier.citedreferenceHuang Q, Elkhooly TA, Liu X, et al. Effects of hierarchical micro/nano‐topographies on the morphology, proliferation and differentiation of osteoblast‐like cells. Colloids Surf B Biointerfaces. 2016; 145: 37 ‐ 45.
dc.identifier.citedreferenceGulati K, Prideaux M, Kogawa M, et al. Anodized 3D‐printed titanium implants with dual micro‐ and nano‐scale topography promote interaction with human osteoblasts and osteocyte‐like cells. J Tissue Eng Regen Med. 2017; 11 ( 12 ): 3313 ‐ 3325.
dc.identifier.citedreferenceMarcatti Amarú Maximiano W, Marino Mazucato V, Tambasco de Oliveira P, Célia Jamur M, Oliver C. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells. J Biomed Mater Res A. 2017; 105 ( 8 ): 2150 ‐ 2161.
dc.identifier.citedreferencede Oliveira PT, Nanci A. Nanotexturing of titanium‐based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004; 25 ( 3 ): 403 ‐ 413.
dc.identifier.citedreferenceThalji G, Gretzer C, Cooper LF. Comparative molecular assessment of early osseointegration in implant‐adherent cells. Bone. 2013; 52 ( 1 ): 444 ‐ 453.
dc.identifier.citedreferenceBryington M, Mendonça G, Nares S, Cooper LF. Osteoblastic and cytokine gene expression of implant‐adherent cells in humans. Clin Oral Implants Res. 2014; 25 ( 1 ): 52 ‐ 58.
dc.identifier.citedreferenceYuan JS, Reed A, Chen F, Stewart CN Jr. Statistical analysis of real‐time PCR data. BMC Bioinformatics. 2006; 7: 85.
dc.identifier.citedreferenceWescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res. 2007; 86 ( 12 ): 1212 ‐ 1216.
dc.identifier.citedreferenceWang J, Meng F, Song W, et al. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int J Nanomedicine. 2018; 13: 4029 ‐ 4043.
dc.identifier.citedreferenceBoyan BD, Cheng A, Olivares‐Navarrete R, Schwartz Z. Implant surface design regulates mesenchymal stem cell differentiation and maturation. Adv Dent Res. 2016; 28 ( 1 ): 10 ‐ 17.
dc.identifier.citedreferenceBressan E, Sbricoli L, Guazzo R, et al. Nanostructured surfaces of dental implants. Int J Mol Sci. 2013; 14 ( 1 ): 1918 ‐ 1931.
dc.identifier.citedreferenceHarris SE, Gluhak‐Heinrich J, Harris MA, et al. DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: theoretical role in controlling mineral quality in the perilacunar matrix. J Musculoskelet Neuronal Interact. 2007; 7 ( 4 ): 313 ‐ 315.
dc.identifier.citedreferenceMendonça G, Mendonça DBS, Aragão FJL, Cooper LF. The combination of micron and nanotopography by H2SO4/H2O2 treatment and its effects on osteoblast‐specific gene expression of hMSCs. J Biomed Mater Res A. 2010; 94A ( 1 ): 169 ‐ 179.
dc.identifier.citedreferenceTang W, Li Y, Osimiri L, Zhang C. Osteoblast‐specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem. 2011; 286 ( 38 ): 32995 ‐ 33002.
dc.identifier.citedreferenceNakashima K, Zhou X, Kunkel G, et al. The novel zinc finger‐containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002; 108 ( 1 ): 17 ‐ 29.
dc.identifier.citedreferenceStein GS, Lian JB, Stein JL, van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev. 1996; 76 ( 2 ): 593 ‐ 629.
dc.identifier.citedreferenceSartori EM, Magro‐Filho O, Mendonça D, Li X, Fu J, Mendonça G. Modulation of micro RNA expression and osteoblast differentiation by Nanotopography. Int J Oral Maxillofac Implants. 2018; 33 ( 2 ): 269 ‐ 280.
dc.identifier.citedreferenceAubin JE. Bone stem cells. J Cell Biochem. 1998; 72 ( Suppl. 30‐31 ): 73 ‐ 82.
dc.identifier.citedreferenceIsa ZM, Schneider GB, Zaharias R, Seabold D, Stanford CM. Effects of fluoride‐modified titanium surfaces on osteoblast proliferation and gene expression. Int J Oral Maxillofac Implants. 2006; 21 ( 2 ): 203 ‐ 211.
dc.identifier.citedreferenceTelford WG, Hawley T, Subach F, Verkhusha V, Hawley RG. Flow cytometry of fluorescent proteins. Methods. 2012; 57 ( 3 ): 318 ‐ 330.
dc.identifier.citedreferenceBerglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003; 14 ( 3 ): 251 ‐ 262.
dc.identifier.citedreferenceEming SA, Martin P, Tomic‐Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014; 6 ( 265 ): 265sr6.
dc.identifier.citedreferenceAubin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell‐cell interactions in osteoblast differentiation. J Cell Biochem. 1999; 72 ( 3 ): 396 ‐ 410.
dc.identifier.citedreferenceBhatia A, Albazzaz M, Espinoza Orías AA, et al. Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo. J Mech Behav Biomed Mater. 2012; 5 ( 1 ): 1 ‐ 8.
dc.identifier.citedreferenceKawanami A, Matsushita T, Chan YY, Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun. 2009; 386 ( 3 ): 477 ‐ 482.
dc.identifier.citedreferenceMendonça G, Mendonça DB, Simões LG, et al. Nanostructured alumina‐coated implant surface: effect on osteoblast‐related gene expression and bone‐to‐implant contact in vivo. Int J Oral Maxillofac Implants. 2009; 24 ( 2 ): 205 ‐ 215.
dc.identifier.citedreferenceMendonça G, Mendonça DBS, Simões LGP, et al. The effects of implant surface nanoscale features on osteoblast‐specific gene expression. Biomaterials. 2009; 30 ( 25 ): 4053 ‐ 4062.
dc.identifier.citedreferenceMendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology – From micron‐ to nanotopography. Biomaterials. 2008; 29 (8): 3822 ‐ 3835. https://doi.org/10.1016/j.biomaterials.2008.05.012
dc.identifier.citedreferenceChakravorty N, Ivanovski S, Prasadam I, Crawford R, Oloyede A, Xiao Y. The microRNA expression signature on modified titanium implant surfaces influences genetic mechanisms leading to osteogenic differentiation. Acta Biomater. 2012; 8 ( 9 ): 3516 ‐ 3523.
dc.identifier.citedreferenceCooper LF. Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. J Prosthet Dent. 1998; 80 ( 4 ): 439 ‐ 449.
dc.identifier.citedreferenceMeirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A. 2008; 87 ( 2 ): 299 ‐ 307.
dc.identifier.citedreferenceGittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014; 10 ( 7 ): 2907 ‐ 2918.
dc.identifier.citedreferenceLiu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016; 12 ( 34 ): 4611 ‐ 4632.
dc.identifier.citedreferenceGittens RA, Olivares‐Navarrete R, Cheng A, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomater. 2013; 9 ( 4 ): 6268 ‐ 6277.
dc.identifier.citedreferenceMendonça G, Mendonça DB, Aragão FJ, Cooper LF. The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast‐specific gene expression of hMSCs. J Biomed Mater Res A. 2010; 94 ( 1 ): 169 ‐ 179.
dc.identifier.citedreferenceKubo K, Tsukimura N, Iwasa F, et al. Cellular behavior on TiO2 nanonodular structures in a micro‐to‐nanoscale hierarchy model. Biomaterials. 2009; 30 ( 29 ): 5319 ‐ 5329.
dc.identifier.citedreferenceMendes VC, Moineddin R, Davies JE. The effect of discrete calcium phosphate nanocrystals on bone‐bonding to titanium surfaces. Biomaterials. 2007; 28 ( 32 ): 4748 ‐ 4755.
dc.identifier.citedreferenceKarazisis D, Petronis S, Agheli H, et al. The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomater. 2017; 53: 559 ‐ 571.
dc.identifier.citedreferenceGuo J, Padilla RJ, Ambrose W, de Kok IJ, Cooper LF. The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials. 2007; 28 ( 36 ): 5418 ‐ 5425.
dc.identifier.citedreferenceWebster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000; 21 ( 17 ): 1803 ‐ 1810.
dc.identifier.citedreferenceKulkarni M, Mazare A, Gongadze E, et al. Titanium nanostructures for biomedical applications. Nanotechnology. 2015; 26 ( 6 ): 062002.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.