Show simple item record

Enabling 4C Fast Charging of Lithium- Ion Batteries by Coating Graphite with a Solid- State Electrolyte

dc.contributor.authorKazyak, Eric
dc.contributor.authorChen, Kuan-Hung
dc.contributor.authorChen, Yuxin
dc.contributor.authorCho, Tae H.
dc.contributor.authorDasgupta, Neil P.
dc.date.accessioned2022-02-07T20:25:51Z
dc.date.available2023-02-07 15:25:48en
dc.date.available2022-02-07T20:25:51Z
dc.date.issued2022-01
dc.identifier.citationKazyak, Eric; Chen, Kuan-Hung ; Chen, Yuxin; Cho, Tae H.; Dasgupta, Neil P. (2022). "Enabling 4C Fast Charging of Lithium- Ion Batteries by Coating Graphite with a Solid- State Electrolyte." Advanced Energy Materials 12(1): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/171610
dc.description.abstractEnabling fast- charging (- ¥4C) of lithium- ion batteries is an important challenge to accelerate the adoption of electric vehicles. However, the desire to maximize energy density has driven the use of increasingly thick electrodes, which hinders rate capability. Herein, atomic layer deposition is used to coat a single- ion conducting solid electrolyte (Li3BO3- Li2CO3) onto postcalendered graphite electrodes, forming an artificial solid- electrolyte interphase (SEI). When compared to uncoated control electrodes, the solid electrolyte coating: 1) eliminates natural SEI formation during preconditioning; 2) decreases interphase impedance by >75% compared to the natural SEI; and 3) extends cycle life under 4C charging conditions, enabling retention of 80% capacity after 500 cycles (compared to 12 cycles in the uncoated control) in pouch cells with >3 mAh cm- 2 loading. This work demonstrates that 4C charging without Li plating can be achieved through purely interfacial modification without sacrificing energy density and sheds new light on the role of the SEI in Li plating and fast- charge performance.An artificial solid- electrolyte interphase (SEI) coating with 75% lower impedance is demonstrated compared to the natural SEI. This coating enables stable cycling under 4C (15 min) charging conditions, retaining 80% capacity over 500 cycles. This challenges the prevailing assumption that mass transport limitations must be addressed to enable fast charging.
dc.publisherWiley Periodicals, Inc.
dc.publisherdaho National Laboratory
dc.subject.otherartificial SEI
dc.subject.otheratomic layer deposition
dc.subject.otherfast charging
dc.subject.otherLi- ion batteries
dc.titleEnabling 4C Fast Charging of Lithium- Ion Batteries by Coating Graphite with a Solid- State Electrolyte
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171610/1/aenm202102618.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171610/2/aenm202102618-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171610/3/aenm202102618_am.pdf
dc.identifier.doi10.1002/aenm.202102618
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceK.- H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, N. P. Dasgupta, J. Mater. Chem. A 2017, 5, 11671.
dc.identifier.citedreferenceJ. Illig, Physically Based Impedance Modelling of Lithium- Ion Cells, KIT Scientific Publishing, Germany 2014.
dc.identifier.citedreferenceJ. Illig, M. Ender, A. Weber, E. Ivers- Tiffée, J. Power Sources 2015, 282, 335.
dc.identifier.citedreferenceP. Yu, J. A. Ritter, R. E. White, B. N. Popov, J. Electrochem. Soc. 2000, 147, 2081.
dc.identifier.citedreferenceM. W. Verbrugge, D. R. Baker, J. Phys. Energy 2019, 2, 014004.
dc.identifier.citedreferenceT. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou, C. N. Yeh, S. Xu, W. C. Chueh, J. Li, M. Z. Bazant, Joule 2021, 5, 393.
dc.identifier.citedreferenceC. Fear, T. Adhikary, R. Carter, A. N. Mistry, C. T. Love, P. P. Mukherjee, ACS Appl. Mater. Interfaces 2020, 12, 30438.
dc.identifier.citedreferenceY. Qi, S. J. Harris, J. Electrochem. Soc. 2010, 157, A741.
dc.identifier.citedreferenceF. Hao, A. Verma, P. P. Mukherjee, J. Mater. Chem. A 2018, 6, 19664.
dc.identifier.citedreferenceT. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi, J. Electrochem. Soc. 2005, 152, A2046.
dc.identifier.citedreferenceY. S. Jung, P. Lu, A. S. Cavanagh, C. Ban, G. H. Kim, S. H. Lee, S. M. George, S. J. Harris, A. C. Dillon, Adv. Energy Mater. 2013, 3, 213.
dc.identifier.citedreferenceY. S. Jung, A. S. Cavanagh, L. A. Riley, S.- H. Kang, A. C. Dillon, M. D. Groner, S. M. George, S.- H. Lee, Adv. Mater. 2010, 22, 2172.
dc.identifier.citedreferenceM. L. Lee, C. Y. Su, Y. H. Lin, S. C. Liao, J. M. Chen, T. P. Perng, J. W. Yeh, H. C. Shih, J. Power Sources 2013, 244, 410.
dc.identifier.citedreferenceJ. Liu, D. Lu, J. Zheng, P. Yan, B. Wang, X. Sun, Y. Shao, C. Wang, J. Xiao, J. G. Zhang, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 21965.
dc.identifier.citedreferenceK. Yan, H.- W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Nano Lett. 2014, 14, 6016.
dc.identifier.citedreferenceX. Meng, X.- Q. Yang, X. Sun, Adv. Mater. 2012, 24, 3589.
dc.identifier.citedreferenceX. Wang, G. Yushin, Energy Environ. Sci. 2015, 8, 1889.
dc.identifier.citedreferenceL. Ma, R. B. Nuwayhid, T. Wu, Y. Lei, K. Amine, J. Lu, Adv. Mater. Interfaces 2016, 3, 1600564.
dc.identifier.citedreferenceK. Dahlberg, J. E. Trevey, A. Dameron, H. M. Meyer III, R. E. Ruther, D. L. Wood III, L. Stevenson, D. Townsend, ECS Meet. Abstr. 2017.
dc.identifier.citedreferenceY. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, S. H. Lee, J. Electrochem. Soc. 2010, 157, A75.
dc.identifier.citedreferenceK. Wu, W. Li, J. Qin, Y. Hao, H. M. Kheimeh Sari, H. Feng, X. Li, J. Mater. Res. 2020, 35, 762.
dc.identifier.citedreferenceJ. Liu, X. Sun, Nanotechnology 2015, 26, 024001.
dc.identifier.citedreferenceY. Zhao, K. Zheng, X. Sun, Joule 2018, 2, 2583.
dc.identifier.citedreferenceH.- Y. Wang, F.- M. Wang, J. Power Sources 2013, 233, 1.
dc.identifier.citedreferenceI. D. Scott, Y. S. Jung, A. S. Cavanagh, Y. Yan, A. C. Dillon, S. M. George, S.- H. Lee, Nano Lett. 2011, 11, 414.
dc.identifier.citedreferenceS. Leroy, F. Blanchard, R. Dedryvère, H. Martinez, B. Carré, D. Lemordant, D. Gonbeau, Surf. Interface Anal. 2005, 37, 773.
dc.identifier.citedreferenceD. L. Wood, J. Li, C. Daniel, J. Power Sources 2015, 275, 234.
dc.identifier.citedreferenceD. Strmcnik, I. E. Castelli, J. G. Connell, D. Haering, M. Zorko, P. Martins, P. P. Lopes, B. Genorio, T. Ã stergaard, H. A. Gasteiger, F. Maglia, B. K. Antonopoulos, V. R. Stamenkovic, J. Rossmeisl, N. M. Markovic, Nat. Catal. 2018, 1, 255.
dc.identifier.citedreferenceC. J. Powell, A. Jablonski, J. Surf. Anal. 2002, 9, 322.
dc.identifier.citedreferenceJ. P. Christopherson, Battery Test Manual for Electric Vehicles, daho National Laboratory, Idaho Falls, Idaho 2015.
dc.identifier.citedreferenceT. Waldmann, B. I. Hogg, M. Wohlfahrt- Mehrens, J. Power Sources 2018, 384, 107.
dc.identifier.citedreferenceM. Petzl, M. Kasper, M. A. Danzer, J. Power Sources 2015, 275, 799.
dc.identifier.citedreferenceJ. Wandt, P. Jakes, J. Granwehr, R. A. Eichel, H. A. Gasteiger, Mater. Today 2018, 21, 231.
dc.identifier.citedreferenceM. Itagaki, S. Yotsuda, N. Kobari, K. Watanabe, S. Kinoshita, M. Ue, Electrochim. Acta 2006, 51, 1629.
dc.identifier.citedreferenceC. Wang, A. J. Appleby, F. E. Little, Electrochim. Acta 2001, 46, 1793.
dc.identifier.citedreferenceX. Zeng, M. Li, D. Abd El- Hady, W. Alshitari, A. S. Al- Bogami, J. Lu, K. Amine, Adv. Energy Mater. 2019, 9, 1900161.
dc.identifier.citedreferenceJ. Deng, C. Bae, A. Denlinger, T. Miller, Joule 2020, 4, 511.
dc.identifier.citedreferenceK. G. Gallagher, S. E. Trask, C. Bauer, T. Woehrle, S. F. Lux, M. Tschech, P. Lamp, B. J. Polzin, S. Ha, B. Long, Q. Wu, W. Lu, D. W. Dees, A. N. Jansen, J. Electrochem. Soc. 2016, 163, A138.
dc.identifier.citedreferenceQ. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin, Y. Gao, RSC Adv. 2016, 6, 88683.
dc.identifier.citedreferenceK. Chen, V. Goel, M. J. Namkoong, M. Wied, S. Müller, V. Wood, J. Sakamoto, K. Thornton, N. P. Dasgupta, Adv. Energy Mater. 2021, 11, 2003336.
dc.identifier.citedreferenceC. P. Sandhya, B. John, C. Gouri, Ionics 2014, 20, 601.
dc.identifier.citedreferenceK. J. Griffith, Y. Harada, S. Egusa, R. M. Ribas, R. S. Monteiro, R. B. Von Dreele, A. K. Cheetham, R. J. Cava, C. P. Grey, J. B. Goodenough, Chem. Mater. 2021, 33, 4.
dc.identifier.citedreferenceJ. B. Habedank, J. Kriegler, M. F. Zaeh, J. Electrochem. Soc. 2019, 166, A3940.
dc.identifier.citedreferenceK.- H. Chen, M. J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi, S. M. Mortuza, E. Kazyak, J. Mazumder, K. Thornton, J. Sakamoto, N. P. Dasgupta, J. Power Sources 2020, 471, 228475.
dc.identifier.citedreferenceL. Li, R. M. Erb, J. Wang, J. Wang, Y. M. Chiang, Adv. Energy Mater. 2019, 9, 1802472.
dc.identifier.citedreferenceJ. H. Shim, S. Lee, J. Power Sources 2016, 324, 475.
dc.identifier.citedreferenceQ. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, J. Power Sources 2015, 284, 258.
dc.identifier.citedreferenceX. G. Yang, T. Liu, Y. Gao, S. Ge, Y. Leng, D. Wang, C. Y. Wang, Joule 2019, 3, 3002.
dc.identifier.citedreferenceD. S. Kim, D. J. Chung, J. Bae, G. Jeong, H. Kim, Electrochim. Acta 2017, 258, 336.
dc.identifier.citedreferenceD. S. Kim, Y. E. Kim, H. Kim, J. Power Sources 2019, 422, 18.
dc.identifier.citedreferenceK. R. Tallman, S. Yan, C. D. Quilty, A. Abraham, A. H. McCarthy, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, D. C. Bock, J. Electrochem. Soc. 2020, 167, 160503.
dc.identifier.citedreferenceK. R. Tallman, B. Zhang, L. Wang, S. Yan, K. Thompson, X. Tong, J. Thieme, A. Kiss, A. C. Marschilok, K. J. Takeuchi, D. C. Bock, E. S. Takeuchi, ACS Appl. Mater. Interfaces 2019, 11, 46864.
dc.identifier.citedreferenceX. Zhang, L. Zou, Y. Xu, X. Cao, M. H. Engelhard, B. E. Matthews, L. Zhong, H. Wu, H. Jia, X. Ren, P. Gao, Z. Chen, Y. Qin, C. Kompella, B. W. Arey, J. Li, D. Wang, C. Wang, J. G. Zhang, W. Xu, Adv. Energy Mater. 2020, 10, 2000368.
dc.identifier.citedreferenceJ. Shi, N. Ehteshami, J. Ma, H. Zhang, H. Liu, X. Zhang, J. Li, E. Paillard, J. Power Sources 2019, 429, 67.
dc.identifier.citedreferenceZ. Du, D. L. Wood, I. Belharouak, Electrochem. Commun. 2019, 103, 109.
dc.identifier.citedreferenceE. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc. 1997, 144, L208.
dc.identifier.citedreferenceE. Peled, J. Electrochem. Soc. 1979, 126, 2047.
dc.identifier.citedreferenceD. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein- Eli, Electrochim. Acta 1999, 45, 67.
dc.identifier.citedreferenceK. Xu, Chem. Rev. 2014, 114, 11503.
dc.identifier.citedreferenceZ. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, L. Chen, Energy Environ. Sci. 2018, 11, 1945.
dc.identifier.citedreferenceK. N. Wood, M. Noked, N. P. Dasgupta, ACS Energy Lett. 2017, 2, 664.
dc.identifier.citedreferenceE. Kazyak, K.- H. Chen, A. L. Davis, S. Yu, A. J. Sanchez, J. Lasso, A. R. Bielinski, T. Thompson, J. Sakamoto, D. J. Siegel, N. P. Dasgupta, J. Mater. Chem. A 2018, 6, 19425.
dc.identifier.citedreferenceE. Kazyak, K.- H. Chen, K. N. Wood, A. L. Davis, T. Thompson, A. R. Bielinski, A. J. Sanchez, X. Wang, C. Wang, J. Sakamoto, N. P. Dasgupta, Chem. Mater. 2017, 29, 3785.
dc.identifier.citedreferenceS. H. Jung, K. Oh, Y. J. Nam, D. Y. Oh, P. Brüner, K. Kang, Y. S. Jung, Chem. Mater. 2018, 30, 8190.
dc.identifier.citedreferenceS. M. George, Chem. Rev. 2010, 110, 111.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.