Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria
dc.contributor.author | Amemiya, Haley M | |
dc.contributor.author | Goss, Thomas J | |
dc.contributor.author | Nye, Taylor M | |
dc.contributor.author | Hurto, Rebecca L | |
dc.contributor.author | Simmons, Lyle A | |
dc.contributor.author | Freddolino, Peter L | |
dc.date.accessioned | 2022-02-07T20:26:37Z | |
dc.date.available | 2023-03-07 15:26:34 | en |
dc.date.available | 2022-02-07T20:26:37Z | |
dc.date.issued | 2022-02-01 | |
dc.identifier.citation | Amemiya, Haley M; Goss, Thomas J; Nye, Taylor M; Hurto, Rebecca L; Simmons, Lyle A; Freddolino, Peter L (2022). "Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria." The EMBO Journal (3): n/a-n/a. | |
dc.identifier.issn | 0261-4189 | |
dc.identifier.issn | 1460-2075 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/171627 | |
dc.description.abstract | There is increasing evidence that prokaryotes maintain chromosome structure, which in turn impacts gene expression. We recently characterized densely occupied, multi‐kilobase regions in the E. coli genome that are transcriptionally silent, similar to eukaryotic heterochromatin. These extended protein occupancy domains (EPODs) span genomic regions containing genes encoding metabolic pathways as well as parasitic elements such as prophages. Here, we investigate the contributions of nucleoid‐associated proteins (NAPs) to the structuring of these domains, by examining the impacts of deleting NAPs on EPODs genome‐wide in E. coli and B. subtilis. We identify key NAPs contributing to the silencing of specific EPODs, whose deletion opens a chromosomal region for RNA polymerase binding at genes contained within that region. We show that changes in E. coli EPODs facilitate an extra layer of transcriptional regulation, which prepares cells for exposure to exotic carbon sources. Furthermore, we distinguish novel xenogeneic silencing roles for the NAPs Fis and Hfq, with the presence of at least one being essential for cell viability in the presence of domesticated prophages. Our findings reveal previously unrecognized mechanisms through which genomic architecture primes bacteria for changing metabolic environments and silences harmful genomic elements.SynopsisE. coli extended protein occupancy domains (EPODs) are densely occupied and transcriptionally silent genomic regions resembling eukaryotic heterochromatin. Here, studies of nucleoid‐associated proteins (NAPs) and their contributions to EPOD structuring suggests that they serve to allow efficient metabolic transitions and minimize leaky expression of prophages.Several E. coli NAPs contribute to structuring of EPODs.Different combinations of NAPs give rise to distinct EPOD subtypes.EPODs play an essential role in silencing potentially harmful genomic elements.EPODs appear to regulate many metabolic genes and allow efficient responses upon repeated induction.Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria. | |
dc.publisher | Academic Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | bacterial gene regulation | |
dc.subject.other | chromatin | |
dc.subject.other | gene regulation | |
dc.subject.other | nucleoid‐associated proteins | |
dc.title | Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171627/1/embj2021108708.reviewer_comments.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171627/2/embj2021108708-sup-0001-Appendix.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171627/3/embj2021108708.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171627/4/embj2021108708_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/171627/5/embj2021108708-sup-0002-EVFigs.pdf | |
dc.identifier.doi | 10.15252/embj.2021108708 | |
dc.identifier.source | The EMBO Journal | |
dc.identifier.citedreference | Salvatier J, Wiecki TV, Fonnesbeck C ( 2016 ) Probabilistic programming in Python using PyMC3. PeerJ Compu Sci 2: e55 | |
dc.identifier.citedreference | Sanchez‐Torres V, Hu H, Wood TK ( 2011 ) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 90: 651 – 658 | |
dc.identifier.citedreference | Santos‐Zavaleta A, Pérez‐Rueda E, Sánchez‐Pérez M, Velázquez‐Ramírez DA, Collado‐Vides J ( 2019 ) Tracing the phylogenetic history of the Crl regulon through the bacteria and archaea genomes. BMC Genom 20: 299 | |
dc.identifier.citedreference | Scholz SA, Diao R, Wolfe MB, Fivenson EM, Lin XN, Freddolino PL ( 2019 ) High‐resolution mapping of the Escherichia coli chromosome reveals positions of high and low transcription. Cell Syst 8: 212 – 225.e9 | |
dc.identifier.citedreference | Schroeder JW, Simmons LA ( 2013 ) Complete genome sequence of Bacillus subtilis strain PY79. Genome Announc 1: e01085‐13 | |
dc.identifier.citedreference | Shen BA, Landick R ( 2019 ) Transcription of bacterial chromatin. J Mol Biol 431: 4040 – 4066 | |
dc.identifier.citedreference | Shin J‐E, Lin C, Lim HN ( 2016 ) Horizontal transfer of DNA methylation patterns into bacterial chromosomes. Nucleic Acids Res 44: 4460 – 4471 | |
dc.identifier.citedreference | Singh K, Milstein JN, Navarre WW ( 2016 ) Xenogeneic silencing and its impact on bacterial genomes. Annu Rev Microbiol 70: 199 – 213 | |
dc.identifier.citedreference | Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, Grainger DC ( 2014 ) Widespread suppression of intragenic transcription initiation by H‐NS. Genes Dev 28: 214 – 219 | |
dc.identifier.citedreference | Smits WK, Grossman AD ( 2010 ) The transcriptional regulator Rok binds A+T‐Rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet 6: e1001207 | |
dc.identifier.citedreference | Sullivan NL, Marquis KA, Rudner DZ ( 2009 ) Recruitment of SMC to the origin by ParB‐parS organizes the origin and promotes efficient chromosome segregation. Cell 137: 697 | |
dc.identifier.citedreference | Thomason LC, Costantino N, Court DL ( 2007 ) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 1: 1.17.1 – 1.17.8 | |
dc.identifier.citedreference | Ueguchi C, Mizuno T ( 1993 ) The Escherichia coli nucleoid protein H‐NS functions directly as a transcriptional repressor. EMBO J 12: 1039 – 1046 | |
dc.identifier.citedreference | Updegrove TB, Zhang A, Storz G ( 2016 ) Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30: 133 – 138 | |
dc.identifier.citedreference | Valentin‐Hansen P, Eriksen M, Udesen C ( 2004 ) The bacterial Sm‐like protein Hfq: a key player in RNA transactions. Mol Microbiol 51: 1525 – 1533 | |
dc.identifier.citedreference | van der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT ( 2017 ) Mechanism of environmentally driven conformational changes that modulate H‐NS DNA‐bridging activity. Elife 6: e27369 | |
dc.identifier.citedreference | Verma SC, Qian Z, Adhya SL ( 2020 ) Correction: architecture of the Escherichia coli nucleoid. PLoS Genet 16: e1009148 | |
dc.identifier.citedreference | Verzani J ( 2011 ) Getting started with RStudio: an integrated development environment for R. Sebastopol, CA: O’Reilly Media, Inc | |
dc.identifier.citedreference | Vora T, Hottes AK, Tavazoie S ( 2009 ) Protein occupancy landscape of a bacterial genome. Mol Cell 35: 247 – 253 | |
dc.identifier.citedreference | Walker DM, Freddolino PL, Harshey RM ( 2020 ) A well‐mixed E. coli genome: widespread contacts revealed by tracking mu transposition. Cell 180: 703 – 716.e18 | |
dc.identifier.citedreference | Wang L, Reeves PR ( 1998 ) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66: 3545 – 3551 | |
dc.identifier.citedreference | Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK ( 2010 ) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1: 147 | |
dc.identifier.citedreference | Wang Z, Wang J, Ren G, Li Y, Wang X ( 2016 ) Deletion of the genes waaC, waaF, or waaG in Escherichia coli W3110 disables the flagella biosynthesis. J Basic Microbiol 56: 1021 – 1035 | |
dc.identifier.citedreference | Wasim A, Gupta A, Mondal J ( 2021 ) Mapping the multiscale organisation of Escherichia coli chromosome in a Hi‐C‐integrated model. bioRxiv https://doi.org/10.1101/2020.06.29.178194 [PREPRINT] | |
dc.identifier.citedreference | Wickham H ( 2009 ) ggplot2: Elegant graphics for data analysis. Springer Science & Business Media | |
dc.identifier.citedreference | Wilhelm L, Bürmann F, Minnen A, Shin H‐C, Toseland CP, Oh B‐H, Gruber S ( 2015 ) SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife 4: e6659 | |
dc.identifier.citedreference | Moazed D ( 2011 ) Mechanisms for the inheritance of chromatin states. Cell 146: 510 – 518 | |
dc.identifier.citedreference | Deatherage DE, Barrick JE ( 2014 ) Identification of mutations in laboratory‐evolved microbes from next‐generation sequencing data using breseq. Methods Mol Biol 1151: 165 – 188 | |
dc.identifier.citedreference | Deng S, Stein RA, Higgins NP ( 2005 ) Organization of supercoil domains and their reorganization by transcription. Mol Microbiol 57: 1511 – 1521 | |
dc.identifier.citedreference | Dillon SC, Dorman CJ ( 2010 ) Bacterial nucleoid‐associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185 – 195 | |
dc.identifier.citedreference | Albano M, Smits WK, Ho LTY, Kraigher B, Mandic‐Mulec I, Kuipers OP, Dubnau D ( 2005 ) The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187: 2010 | |
dc.identifier.citedreference | Al‐Bassam MM, Moyne O, Chapin N, Zengler K ( 2021 ) Nucleoid openness profiling links bacterial genome structure to phenotype. bioRxiv https://doi.org/10.1101/2020.05.07.082990 [PREPRINT] | |
dc.identifier.citedreference | Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A ( 1999 ) Growth phase‐dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181: 6361 – 6370 | |
dc.identifier.citedreference | Amemiya HM, Schroeder J, Freddolino PL ( 2021 ) Nucleoid‐associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 12: 182 – 218 | |
dc.identifier.citedreference | Anders S, Pyl PT, Huber W ( 2015 ) HTSeq–a Python framework to work with high‐throughput sequencing data. Bioinformatics 31: 166 – 169 | |
dc.identifier.citedreference | Appleman JA, Ross W, Salomon J, Gourse RL ( 1998 ) Activation of Escherichia coli rRNA transcription by FIS during a growth cycle. J Bacteriol 180: 1525 – 1532 | |
dc.identifier.citedreference | Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H ( 2006 ) Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008 | |
dc.identifier.citedreference | Barh D, Azevedo V ( 2017 ) Omics technologies and bio‐engineering: volume 1: towards improving quality of life. Academic Press | |
dc.identifier.citedreference | Baumler A ( 2006 ) Faculty Opinions recommendation of Selective silencing of foreign DNA with low GC content by the H‐NS protein in Salmonella. Faculty Opinions – Post‐Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1032929.492954 | |
dc.identifier.citedreference | Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T ( 1998 ) Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L‐idonic acid catabolism in Escherichia coli. J Bacteriol 180: 3704 – 3710 | |
dc.identifier.citedreference | Bausch C, Ramsey M, Conway T ( 2004 ) Transcriptional organization and regulation of the L‐idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 186: 1388 – 1397 | |
dc.identifier.citedreference | Bokal 4th AJ, Ross W, Gourse RL ( 1995 ) The transcriptional activator protein FIS: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. J Mol Biol 245: 197 – 207 | |
dc.identifier.citedreference | Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R ( 2018 ) StpA and Hha stimulate pausing by RNA polymerase by promoting DNA‐DNA bridging of H‐NS filaments. Nucleic Acids Res 46: 5525 – 5546 | |
dc.identifier.citedreference | Cherepanov PP, Wackernagel W ( 1995 ) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant. Gene 158: 9 – 14 | |
dc.identifier.citedreference | Chintakayala K, Singh SS, Rossiter AE, Shahapure R, Dame RT, Grainger DCE ( 2013 ) coli Fis protein insulates the cbpA gene from uncontrolled transcription. PLoS Genet 9: e1003152 | |
dc.identifier.citedreference | Cho B‐K, Knight EM, Barrett CL, Palsson BØ ( 2008 ) Genome‐wide analysis of Fis binding in Escherichia coli indicates a causative role for A‐/AT‐tracts. Genome Res 18: 900 – 910 | |
dc.identifier.citedreference | Dorman CJ ( 2004 ) H‐NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2: 391 – 400 | |
dc.identifier.citedreference | D’Souza JM, Wang L, Reeves P ( 2002 ) Sequence of the Escherichia coli O26 O antigen gene cluster and identification of O26 specific genes. Gene 297: 123 – 127 | |
dc.identifier.citedreference | Faubladier M, Bouché JP ( 1994 ) Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol 176: 1150 – 1156 | |
dc.identifier.citedreference | Feng L, Han W, Wang Q, Bastin DA, Wang L ( 2005 ) Characterization of Escherichia coli O86 O‐antigen gene cluster and identification of O86‐specific genes. Vet Microbiol 106: 241 – 248 | |
dc.identifier.citedreference | Francis NJ, Kingston RE ( 2001 ) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2: 409 – 421 | |
dc.identifier.citedreference | Freddolino PL, Amemiya HM, Goss TJ, Tavazoie S ( 2021a ) Dynamic landscape of protein occupancy across the Escherichia coli chromosome. PLoS Biol 19: e3001306 | |
dc.identifier.citedreference | Freddolino PL, Amini S, Tavazoie S ( 2012 ) Newly identified genetic variations in common Escherichia coli MG1655 stock cultures. J Bacteriol 194: 303 – 306 | |
dc.identifier.citedreference | Freddolino PL, Goss TJ, Amemiya HM, Tavazoie S ( 2021b ) Dynamic landscape of protein occupancy across the Escherichia coli chromosome. bioRxiv https://doi.org/10.1101/2020.01.29.924811 [PREPRINT] | |
dc.identifier.citedreference | Freddolino PL, Tavazoie S ( 2012 ) Beyond homeostasis: a predictive‐dynamic framework for understanding cellular behavior. Annu Rev Cell Dev Biol 28: 363 – 384 | |
dc.identifier.citedreference | Frenkiel‐Krispin D, Levin‐Zaidman S, Shimoni E, Wolf SG, Wachtel EJ, Arad T et al ( 2001 ) Regulated phase transitions of bacterial chromatin: a non‐enzymatic pathway for generic DNA protection. EMBO J 20: 1184 – 1191 | |
dc.identifier.citedreference | Gómez KM, Rodríguez A, Rodriguez Y, Ramírez AH, Istúriz T ( 2011 ) The subsidiary GntII system for gluconate metabolism in Escherichia coli: alternative induction of the gntV gene. Biol Res 44: 269 – 275 | |
dc.identifier.citedreference | Goodarzi H, Elemento O, Tavazoie S ( 2009 ) Revealing global regulatory perturbations across human cancers. Mol Cell 36: 900 – 911 | |
dc.identifier.citedreference | Grainger DC, Goldberg MD, Lee DJ, Busby SJW ( 2008 ) Selective repression by Fis and H‐NS at the Escherichia coli dps promoter. Mol Microbiol 68: 1366 – 1377 | |
dc.identifier.citedreference | Graumann PL ( 2000 ) Bacillus subtilis SMC is required for proper arrangement of the chromosome and for efficient segregation of replication termini but not for bipolar movement of newly duplicated origin regions. J Bacteriol 182: 6463 – 6471 | |
dc.identifier.citedreference | Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D et al ( 2020 ) Array programming with NumPy. Nature 585: 357 – 362 | |
dc.identifier.citedreference | Hengge R ( 2009 ) Principles of c‐di‐GMP signalling in bacteria. Nat Rev Microbiol 7: 263 – 273 | |
dc.identifier.citedreference | Hoa TT, Tortosa P, Albano M, Dubnau D ( 2002 ) Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43: 15 – 26 | |
dc.identifier.citedreference | Hong SH, Wang X, Wood TK ( 2010 ) Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli. Microb Biotechnol 3: 344 – 356 | |
dc.identifier.citedreference | Kahramanoglou C, Seshasayee ASN, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM ( 2011 ) Direct and indirect effects of H‐NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39: 2073 – 2091 | |
dc.identifier.citedreference | Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R ( 2015 ) Bridged filaments of histone‐like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 4: e4970 | |
dc.identifier.citedreference | Kundu S, Horn PJ, Peterson CL ( 2007 ) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21: 997 – 1004 | |
dc.identifier.citedreference | Lagha M, Ferraro T, Dufourt J, Radulescu O, Mantovani M ( 2017 ) Transcriptional memory in the Drosophila embryo. Mech Dev 145: S137 | |
dc.identifier.citedreference | Landick R, Wade JT, Grainger DC ( 2015 ) H‐NS and RNA polymerase: a love‐hate relationship? Curr Opin Microbiol 24: 53 – 59 | |
dc.identifier.citedreference | Lim CJ, Whang YR, Kenney LJ, Yan J ( 2012 ) Gene silencing H‐NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40: 3316 – 3328 | |
dc.identifier.citedreference | Link AJ, Phillips D, Church GM ( 1997 ) Methods for generating precise deletions and insertions in the genome of wild‐type Escherichia coli: application to open reading frame characterization. J Bacteriol 179: 6228 – 6237 | |
dc.identifier.citedreference | Linkevicius M, Sandegren L, Andersson DI ( 2013 ) Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 68: 2809 – 2819 | |
dc.identifier.citedreference | Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R ( 2018 ) Multiscale structuring of the E.coli chromosome by nucleoid‐associated and condensin proteins. Cell 172: 771 – 783.e18 | |
dc.identifier.citedreference | Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD ( 2006 ) H‐NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2: e81 | |
dc.identifier.citedreference | Luijsterburg MS, White MF, van Driel R, Dame RT ( 2008 ) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43: 393 – 418 | |
dc.identifier.citedreference | McQuail J, Switzer A, Burchell L, Wigneshweraraj S ( 2020 ) The RNA‐binding protein Hfq assembles into foci‐like structures in nitrogen starved. J Biol Chem 295: 12355 – 12367 | |
dc.identifier.citedreference | Nagai K ( 2002 ) Faculty Opinions recommendation of Hfq: a bacterial Sm‐like protein that mediates RNA‐RNA interaction. Faculty Opinions – Post‐Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1003709.40104 | |
dc.identifier.citedreference | Nair S, Finkel SE ( 2004 ) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186: 4192 – 4198 | |
dc.identifier.citedreference | Nakamura K, Ogura Y, Gotoh Y, Hayashi T ( 2021 ) Prophages integrating into prophages: a mechanism to accumulate type III secretion effector genes and duplicate Shiga toxin‐encoding prophages in Escherichia coli. bioRxiv https://doi.org/10.1101/2020.11.04.367953 [PREPRINT] | |
dc.identifier.citedreference | Nakao R, Ramstedt M, Wai SN, Uhlin BE ( 2012 ) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7: e51241 | |
dc.identifier.citedreference | Navarre WW ( 2006 ) Selective silencing of foreign DNA with low GC content by the H‐NS protein in Salmonella. Science 313: 236 – 238 | |
dc.identifier.citedreference | Navarre WW, McClelland M, Libby SJ, Fang FC ( 2007 ) Silencing of xenogeneic DNA by H‐NS—facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21: 1456 – 1471 | |
dc.identifier.citedreference | Neeli‐Venkata R, Martikainen A, Gupta A, Gonçalves N, Fonseca J, Ribeiro AS ( 2016 ) Robustness of the process of nucleoid exclusion of protein aggregates in Escherichia coli. J Bacteriol 198: 898 – 906 | |
dc.identifier.citedreference | Neidhardt FC, Bloch PL, Smith DF ( 1974 ) Culture medium for enterobacteria. J Bacteriol 119: 736 – 747 | |
dc.identifier.citedreference | Orans J, Kovach AR, Hoff KE, Horstmann NM, Brennan RG ( 2020 ) Crystal structure of an Escherichia coli Hfq Core (residues 2–69)–DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res 48: 3987 – 3997 | |
dc.identifier.citedreference | Palozola KC, Lerner J, Zaret KS ( 2019 ) A changing paradigm of transcriptional memory propagation through mitosis. Nat Rev Mol Cell Biol 20: 55 – 64 | |
dc.identifier.citedreference | Posfai G ( 2006 ) Emergent properties of reduced‐genome Escherichia coli. Science 312: 1044 – 1046 | |
dc.identifier.citedreference | Postow L, Hardy CD, Arsuaga J, Cozzarelli NR ( 2004 ) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18: 1766 – 1779 | |
dc.identifier.citedreference | Remesh SG, Verma SC, Chen J‐H, Ekman AA, Larabell CA, Adhya S, Hammel M ( 2020 ) Nucleoid remodeling during environmental adaptation is regulated by HU‐dependent DNA bundling. Nat Commun 11: 2905 | |
dc.identifier.citedreference | RStudio ( 2020 ) https://rstudio.com/ | |
dc.identifier.citedreference | Rubirés X, Saigi F, Piqué N, Climent N, Merino S, Albertí S, Tomás JM, Regué M ( 1997 ) A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb‐50 mutation of Escherichia coli K‐12 derivatives. J Bacteriol 179: 7581 – 7586 | |
dc.identifier.citedreference | Salgado H, Martínez‐Flores I, Bustamante VH, Alquicira‐Hernández K, García‐Sotelo JS, García‐Alonso D, Collado‐Vides J ( 2018 ) Using RegulonDB, the Escherichia coli K‐12 gene regulatory transcriptional network database. Curr Protoc Bioinformatics 61: 1.32.1–1.32.30 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.