Show simple item record

Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria

dc.contributor.authorAmemiya, Haley M
dc.contributor.authorGoss, Thomas J
dc.contributor.authorNye, Taylor M
dc.contributor.authorHurto, Rebecca L
dc.contributor.authorSimmons, Lyle A
dc.contributor.authorFreddolino, Peter L
dc.date.accessioned2022-02-07T20:26:37Z
dc.date.available2023-03-07 15:26:34en
dc.date.available2022-02-07T20:26:37Z
dc.date.issued2022-02-01
dc.identifier.citationAmemiya, Haley M; Goss, Thomas J; Nye, Taylor M; Hurto, Rebecca L; Simmons, Lyle A; Freddolino, Peter L (2022). "Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria." The EMBO Journal (3): n/a-n/a.
dc.identifier.issn0261-4189
dc.identifier.issn1460-2075
dc.identifier.urihttps://hdl.handle.net/2027.42/171627
dc.description.abstractThere is increasing evidence that prokaryotes maintain chromosome structure, which in turn impacts gene expression. We recently characterized densely occupied, multi‐kilobase regions in the E. coli genome that are transcriptionally silent, similar to eukaryotic heterochromatin. These extended protein occupancy domains (EPODs) span genomic regions containing genes encoding metabolic pathways as well as parasitic elements such as prophages. Here, we investigate the contributions of nucleoid‐associated proteins (NAPs) to the structuring of these domains, by examining the impacts of deleting NAPs on EPODs genome‐wide in E. coli and B. subtilis. We identify key NAPs contributing to the silencing of specific EPODs, whose deletion opens a chromosomal region for RNA polymerase binding at genes contained within that region. We show that changes in E. coli EPODs facilitate an extra layer of transcriptional regulation, which prepares cells for exposure to exotic carbon sources. Furthermore, we distinguish novel xenogeneic silencing roles for the NAPs Fis and Hfq, with the presence of at least one being essential for cell viability in the presence of domesticated prophages. Our findings reveal previously unrecognized mechanisms through which genomic architecture primes bacteria for changing metabolic environments and silences harmful genomic elements.SynopsisE. coli extended protein occupancy domains (EPODs) are densely occupied and transcriptionally silent genomic regions resembling eukaryotic heterochromatin. Here, studies of nucleoid‐associated proteins (NAPs) and their contributions to EPOD structuring suggests that they serve to allow efficient metabolic transitions and minimize leaky expression of prophages.Several E. coli NAPs contribute to structuring of EPODs.Different combinations of NAPs give rise to distinct EPOD subtypes.EPODs play an essential role in silencing potentially harmful genomic elements.EPODs appear to regulate many metabolic genes and allow efficient responses upon repeated induction.Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbacterial gene regulation
dc.subject.otherchromatin
dc.subject.othergene regulation
dc.subject.othernucleoid‐associated proteins
dc.titleDistinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171627/1/embj2021108708.reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171627/2/embj2021108708-sup-0001-Appendix.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171627/3/embj2021108708.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171627/4/embj2021108708_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171627/5/embj2021108708-sup-0002-EVFigs.pdf
dc.identifier.doi10.15252/embj.2021108708
dc.identifier.sourceThe EMBO Journal
dc.identifier.citedreferenceSalvatier J, Wiecki TV, Fonnesbeck C ( 2016 ) Probabilistic programming in Python using PyMC3. PeerJ Compu Sci 2: e55
dc.identifier.citedreferenceSanchez‐Torres V, Hu H, Wood TK ( 2011 ) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 90: 651 – 658
dc.identifier.citedreferenceSantos‐Zavaleta A, Pérez‐Rueda E, Sánchez‐Pérez M, Velázquez‐Ramírez DA, Collado‐Vides J ( 2019 ) Tracing the phylogenetic history of the Crl regulon through the bacteria and archaea genomes. BMC Genom 20: 299
dc.identifier.citedreferenceScholz SA, Diao R, Wolfe MB, Fivenson EM, Lin XN, Freddolino PL ( 2019 ) High‐resolution mapping of the Escherichia coli chromosome reveals positions of high and low transcription. Cell Syst 8: 212 – 225.e9
dc.identifier.citedreferenceSchroeder JW, Simmons LA ( 2013 ) Complete genome sequence of Bacillus subtilis strain PY79. Genome Announc 1: e01085‐13
dc.identifier.citedreferenceShen BA, Landick R ( 2019 ) Transcription of bacterial chromatin. J Mol Biol 431: 4040 – 4066
dc.identifier.citedreferenceShin J‐E, Lin C, Lim HN ( 2016 ) Horizontal transfer of DNA methylation patterns into bacterial chromosomes. Nucleic Acids Res 44: 4460 – 4471
dc.identifier.citedreferenceSingh K, Milstein JN, Navarre WW ( 2016 ) Xenogeneic silencing and its impact on bacterial genomes. Annu Rev Microbiol 70: 199 – 213
dc.identifier.citedreferenceSingh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, Grainger DC ( 2014 ) Widespread suppression of intragenic transcription initiation by H‐NS. Genes Dev 28: 214 – 219
dc.identifier.citedreferenceSmits WK, Grossman AD ( 2010 ) The transcriptional regulator Rok binds A+T‐Rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet 6: e1001207
dc.identifier.citedreferenceSullivan NL, Marquis KA, Rudner DZ ( 2009 ) Recruitment of SMC to the origin by ParB‐parS organizes the origin and promotes efficient chromosome segregation. Cell 137: 697
dc.identifier.citedreferenceThomason LC, Costantino N, Court DL ( 2007 ) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 1: 1.17.1 – 1.17.8
dc.identifier.citedreferenceUeguchi C, Mizuno T ( 1993 ) The Escherichia coli nucleoid protein H‐NS functions directly as a transcriptional repressor. EMBO J 12: 1039 – 1046
dc.identifier.citedreferenceUpdegrove TB, Zhang A, Storz G ( 2016 ) Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30: 133 – 138
dc.identifier.citedreferenceValentin‐Hansen P, Eriksen M, Udesen C ( 2004 ) The bacterial Sm‐like protein Hfq: a key player in RNA transactions. Mol Microbiol 51: 1525 – 1533
dc.identifier.citedreferencevan der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT ( 2017 ) Mechanism of environmentally driven conformational changes that modulate H‐NS DNA‐bridging activity. Elife 6: e27369
dc.identifier.citedreferenceVerma SC, Qian Z, Adhya SL ( 2020 ) Correction: architecture of the Escherichia coli nucleoid. PLoS Genet 16: e1009148
dc.identifier.citedreferenceVerzani J ( 2011 ) Getting started with RStudio: an integrated development environment for R. Sebastopol, CA: O’Reilly Media, Inc
dc.identifier.citedreferenceVora T, Hottes AK, Tavazoie S ( 2009 ) Protein occupancy landscape of a bacterial genome. Mol Cell 35: 247 – 253
dc.identifier.citedreferenceWalker DM, Freddolino PL, Harshey RM ( 2020 ) A well‐mixed E. coli genome: widespread contacts revealed by tracking mu transposition. Cell 180: 703 – 716.e18
dc.identifier.citedreferenceWang L, Reeves PR ( 1998 ) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66: 3545 – 3551
dc.identifier.citedreferenceWang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK ( 2010 ) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1: 147
dc.identifier.citedreferenceWang Z, Wang J, Ren G, Li Y, Wang X ( 2016 ) Deletion of the genes waaC, waaF, or waaG in Escherichia coli W3110 disables the flagella biosynthesis. J Basic Microbiol 56: 1021 – 1035
dc.identifier.citedreferenceWasim A, Gupta A, Mondal J ( 2021 ) Mapping the multiscale organisation of Escherichia coli chromosome in a Hi‐C‐integrated model. bioRxiv https://doi.org/10.1101/2020.06.29.178194 [PREPRINT]
dc.identifier.citedreferenceWickham H ( 2009 ) ggplot2: Elegant graphics for data analysis. Springer Science & Business Media
dc.identifier.citedreferenceWilhelm L, Bürmann F, Minnen A, Shin H‐C, Toseland CP, Oh B‐H, Gruber S ( 2015 ) SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife 4: e6659
dc.identifier.citedreferenceMoazed D ( 2011 ) Mechanisms for the inheritance of chromatin states. Cell 146: 510 – 518
dc.identifier.citedreferenceDeatherage DE, Barrick JE ( 2014 ) Identification of mutations in laboratory‐evolved microbes from next‐generation sequencing data using breseq. Methods Mol Biol 1151: 165 – 188
dc.identifier.citedreferenceDeng S, Stein RA, Higgins NP ( 2005 ) Organization of supercoil domains and their reorganization by transcription. Mol Microbiol 57: 1511 – 1521
dc.identifier.citedreferenceDillon SC, Dorman CJ ( 2010 ) Bacterial nucleoid‐associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185 – 195
dc.identifier.citedreferenceAlbano M, Smits WK, Ho LTY, Kraigher B, Mandic‐Mulec I, Kuipers OP, Dubnau D ( 2005 ) The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187: 2010
dc.identifier.citedreferenceAl‐Bassam MM, Moyne O, Chapin N, Zengler K ( 2021 ) Nucleoid openness profiling links bacterial genome structure to phenotype. bioRxiv https://doi.org/10.1101/2020.05.07.082990 [PREPRINT]
dc.identifier.citedreferenceAli Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A ( 1999 ) Growth phase‐dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181: 6361 – 6370
dc.identifier.citedreferenceAmemiya HM, Schroeder J, Freddolino PL ( 2021 ) Nucleoid‐associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 12: 182 – 218
dc.identifier.citedreferenceAnders S, Pyl PT, Huber W ( 2015 ) HTSeq–a Python framework to work with high‐throughput sequencing data. Bioinformatics 31: 166 – 169
dc.identifier.citedreferenceAppleman JA, Ross W, Salomon J, Gourse RL ( 1998 ) Activation of Escherichia coli rRNA transcription by FIS during a growth cycle. J Bacteriol 180: 1525 – 1532
dc.identifier.citedreferenceBaba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H ( 2006 ) Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008
dc.identifier.citedreferenceBarh D, Azevedo V ( 2017 ) Omics technologies and bio‐engineering: volume 1: towards improving quality of life. Academic Press
dc.identifier.citedreferenceBaumler A ( 2006 ) Faculty Opinions recommendation of Selective silencing of foreign DNA with low GC content by the H‐NS protein in Salmonella. Faculty Opinions – Post‐Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1032929.492954
dc.identifier.citedreferenceBausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T ( 1998 ) Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L‐idonic acid catabolism in Escherichia coli. J Bacteriol 180: 3704 – 3710
dc.identifier.citedreferenceBausch C, Ramsey M, Conway T ( 2004 ) Transcriptional organization and regulation of the L‐idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 186: 1388 – 1397
dc.identifier.citedreferenceBokal 4th AJ, Ross W, Gourse RL ( 1995 ) The transcriptional activator protein FIS: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. J Mol Biol 245: 197 – 207
dc.identifier.citedreferenceBoudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R ( 2018 ) StpA and Hha stimulate pausing by RNA polymerase by promoting DNA‐DNA bridging of H‐NS filaments. Nucleic Acids Res 46: 5525 – 5546
dc.identifier.citedreferenceCherepanov PP, Wackernagel W ( 1995 ) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant. Gene 158: 9 – 14
dc.identifier.citedreferenceChintakayala K, Singh SS, Rossiter AE, Shahapure R, Dame RT, Grainger DCE ( 2013 ) coli Fis protein insulates the cbpA gene from uncontrolled transcription. PLoS Genet 9: e1003152
dc.identifier.citedreferenceCho B‐K, Knight EM, Barrett CL, Palsson BØ ( 2008 ) Genome‐wide analysis of Fis binding in Escherichia coli indicates a causative role for A‐/AT‐tracts. Genome Res 18: 900 – 910
dc.identifier.citedreferenceDorman CJ ( 2004 ) H‐NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2: 391 – 400
dc.identifier.citedreferenceD’Souza JM, Wang L, Reeves P ( 2002 ) Sequence of the Escherichia coli O26 O antigen gene cluster and identification of O26 specific genes. Gene 297: 123 – 127
dc.identifier.citedreferenceFaubladier M, Bouché JP ( 1994 ) Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol 176: 1150 – 1156
dc.identifier.citedreferenceFeng L, Han W, Wang Q, Bastin DA, Wang L ( 2005 ) Characterization of Escherichia coli O86 O‐antigen gene cluster and identification of O86‐specific genes. Vet Microbiol 106: 241 – 248
dc.identifier.citedreferenceFrancis NJ, Kingston RE ( 2001 ) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2: 409 – 421
dc.identifier.citedreferenceFreddolino PL, Amemiya HM, Goss TJ, Tavazoie S ( 2021a ) Dynamic landscape of protein occupancy across the Escherichia coli chromosome. PLoS Biol 19: e3001306
dc.identifier.citedreferenceFreddolino PL, Amini S, Tavazoie S ( 2012 ) Newly identified genetic variations in common Escherichia coli MG1655 stock cultures. J Bacteriol 194: 303 – 306
dc.identifier.citedreferenceFreddolino PL, Goss TJ, Amemiya HM, Tavazoie S ( 2021b ) Dynamic landscape of protein occupancy across the Escherichia coli chromosome. bioRxiv https://doi.org/10.1101/2020.01.29.924811 [PREPRINT]
dc.identifier.citedreferenceFreddolino PL, Tavazoie S ( 2012 ) Beyond homeostasis: a predictive‐dynamic framework for understanding cellular behavior. Annu Rev Cell Dev Biol 28: 363 – 384
dc.identifier.citedreferenceFrenkiel‐Krispin D, Levin‐Zaidman S, Shimoni E, Wolf SG, Wachtel EJ, Arad T et al ( 2001 ) Regulated phase transitions of bacterial chromatin: a non‐enzymatic pathway for generic DNA protection. EMBO J 20: 1184 – 1191
dc.identifier.citedreferenceGómez KM, Rodríguez A, Rodriguez Y, Ramírez AH, Istúriz T ( 2011 ) The subsidiary GntII system for gluconate metabolism in Escherichia coli: alternative induction of the gntV gene. Biol Res 44: 269 – 275
dc.identifier.citedreferenceGoodarzi H, Elemento O, Tavazoie S ( 2009 ) Revealing global regulatory perturbations across human cancers. Mol Cell 36: 900 – 911
dc.identifier.citedreferenceGrainger DC, Goldberg MD, Lee DJ, Busby SJW ( 2008 ) Selective repression by Fis and H‐NS at the Escherichia coli dps promoter. Mol Microbiol 68: 1366 – 1377
dc.identifier.citedreferenceGraumann PL ( 2000 ) Bacillus subtilis SMC is required for proper arrangement of the chromosome and for efficient segregation of replication termini but not for bipolar movement of newly duplicated origin regions. J Bacteriol 182: 6463 – 6471
dc.identifier.citedreferenceHarris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D et al ( 2020 ) Array programming with NumPy. Nature 585: 357 – 362
dc.identifier.citedreferenceHengge R ( 2009 ) Principles of c‐di‐GMP signalling in bacteria. Nat Rev Microbiol 7: 263 – 273
dc.identifier.citedreferenceHoa TT, Tortosa P, Albano M, Dubnau D ( 2002 ) Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43: 15 – 26
dc.identifier.citedreferenceHong SH, Wang X, Wood TK ( 2010 ) Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli. Microb Biotechnol 3: 344 – 356
dc.identifier.citedreferenceKahramanoglou C, Seshasayee ASN, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM ( 2011 ) Direct and indirect effects of H‐NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39: 2073 – 2091
dc.identifier.citedreferenceKotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R ( 2015 ) Bridged filaments of histone‐like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 4: e4970
dc.identifier.citedreferenceKundu S, Horn PJ, Peterson CL ( 2007 ) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21: 997 – 1004
dc.identifier.citedreferenceLagha M, Ferraro T, Dufourt J, Radulescu O, Mantovani M ( 2017 ) Transcriptional memory in the Drosophila embryo. Mech Dev 145: S137
dc.identifier.citedreferenceLandick R, Wade JT, Grainger DC ( 2015 ) H‐NS and RNA polymerase: a love‐hate relationship? Curr Opin Microbiol 24: 53 – 59
dc.identifier.citedreferenceLim CJ, Whang YR, Kenney LJ, Yan J ( 2012 ) Gene silencing H‐NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40: 3316 – 3328
dc.identifier.citedreferenceLink AJ, Phillips D, Church GM ( 1997 ) Methods for generating precise deletions and insertions in the genome of wild‐type Escherichia coli: application to open reading frame characterization. J Bacteriol 179: 6228 – 6237
dc.identifier.citedreferenceLinkevicius M, Sandegren L, Andersson DI ( 2013 ) Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 68: 2809 – 2819
dc.identifier.citedreferenceLioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R ( 2018 ) Multiscale structuring of the E.coli chromosome by nucleoid‐associated and condensin proteins. Cell 172: 771 – 783.e18
dc.identifier.citedreferenceLucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD ( 2006 ) H‐NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2: e81
dc.identifier.citedreferenceLuijsterburg MS, White MF, van Driel R, Dame RT ( 2008 ) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43: 393 – 418
dc.identifier.citedreferenceMcQuail J, Switzer A, Burchell L, Wigneshweraraj S ( 2020 ) The RNA‐binding protein Hfq assembles into foci‐like structures in nitrogen starved. J Biol Chem 295: 12355 – 12367
dc.identifier.citedreferenceNagai K ( 2002 ) Faculty Opinions recommendation of Hfq: a bacterial Sm‐like protein that mediates RNA‐RNA interaction. Faculty Opinions – Post‐Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1003709.40104
dc.identifier.citedreferenceNair S, Finkel SE ( 2004 ) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186: 4192 – 4198
dc.identifier.citedreferenceNakamura K, Ogura Y, Gotoh Y, Hayashi T ( 2021 ) Prophages integrating into prophages: a mechanism to accumulate type III secretion effector genes and duplicate Shiga toxin‐encoding prophages in Escherichia coli. bioRxiv https://doi.org/10.1101/2020.11.04.367953 [PREPRINT]
dc.identifier.citedreferenceNakao R, Ramstedt M, Wai SN, Uhlin BE ( 2012 ) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7: e51241
dc.identifier.citedreferenceNavarre WW ( 2006 ) Selective silencing of foreign DNA with low GC content by the H‐NS protein in Salmonella. Science 313: 236 – 238
dc.identifier.citedreferenceNavarre WW, McClelland M, Libby SJ, Fang FC ( 2007 ) Silencing of xenogeneic DNA by H‐NS—facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21: 1456 – 1471
dc.identifier.citedreferenceNeeli‐Venkata R, Martikainen A, Gupta A, Gonçalves N, Fonseca J, Ribeiro AS ( 2016 ) Robustness of the process of nucleoid exclusion of protein aggregates in Escherichia coli. J Bacteriol 198: 898 – 906
dc.identifier.citedreferenceNeidhardt FC, Bloch PL, Smith DF ( 1974 ) Culture medium for enterobacteria. J Bacteriol 119: 736 – 747
dc.identifier.citedreferenceOrans J, Kovach AR, Hoff KE, Horstmann NM, Brennan RG ( 2020 ) Crystal structure of an Escherichia coli Hfq Core (residues 2–69)–DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res 48: 3987 – 3997
dc.identifier.citedreferencePalozola KC, Lerner J, Zaret KS ( 2019 ) A changing paradigm of transcriptional memory propagation through mitosis. Nat Rev Mol Cell Biol 20: 55 – 64
dc.identifier.citedreferencePosfai G ( 2006 ) Emergent properties of reduced‐genome Escherichia coli. Science 312: 1044 – 1046
dc.identifier.citedreferencePostow L, Hardy CD, Arsuaga J, Cozzarelli NR ( 2004 ) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18: 1766 – 1779
dc.identifier.citedreferenceRemesh SG, Verma SC, Chen J‐H, Ekman AA, Larabell CA, Adhya S, Hammel M ( 2020 ) Nucleoid remodeling during environmental adaptation is regulated by HU‐dependent DNA bundling. Nat Commun 11: 2905
dc.identifier.citedreferenceRStudio ( 2020 ) https://rstudio.com/
dc.identifier.citedreferenceRubirés X, Saigi F, Piqué N, Climent N, Merino S, Albertí S, Tomás JM, Regué M ( 1997 ) A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb‐50 mutation of Escherichia coli K‐12 derivatives. J Bacteriol 179: 7581 – 7586
dc.identifier.citedreferenceSalgado H, Martínez‐Flores I, Bustamante VH, Alquicira‐Hernández K, García‐Sotelo JS, García‐Alonso D, Collado‐Vides J ( 2018 ) Using RegulonDB, the Escherichia coli K‐12 gene regulatory transcriptional network database. Curr Protoc Bioinformatics 61: 1.32.1–1.32.30
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.