Show simple item record

An extensive record of orogenesis recorded in a Madagascar granulite

dc.contributor.authorHorton, Forrest
dc.contributor.authorHolder, Robert M.
dc.contributor.authorSwindle, Carl R.
dc.date.accessioned2022-03-07T03:10:50Z
dc.date.available2023-03-06 22:10:48en
dc.date.available2022-03-07T03:10:50Z
dc.date.issued2022-02
dc.identifier.citationHorton, Forrest; Holder, Robert M.; Swindle, Carl R. (2022). "An extensive record of orogenesis recorded in a Madagascar granulite." Journal of Metamorphic Geology 40(2): 287-305.
dc.identifier.issn0263-4929
dc.identifier.issn1525-1314
dc.identifier.urihttps://hdl.handle.net/2027.42/171811
dc.description.abstractWe present a comprehensive petrological and geochronological study of a single granulite sample from the lithosphere‐scale Beraketa shear zone in southern Madagascar to constrain the orogenic history of Gondwana assembly in this region. The studied sample provides a panoply of data constraining the prograde, retrograde, and late metasomatic history of the region via the application of Ti‐in‐quartz, Ti‐in‐zircon, Zr‐in‐rutile, and Al‐in‐orthopyroxene thermobarometry; phase‐equilibrium modelling; U–Pb monazite, zircon, and rutile petrochronology; and trace element diffusion chronometry in rutile. Our results reveal five stages of metamorphism along a narrow clockwise P–T path that may have begun as early as 620–600 Ma and certainly by 580–560 Ma, based on the oldest concordant zircon dates. The rock was heated to >725°C at less than 7.5 kbar (Stage 1) before burial to ~8 kbar (Stage 2). By c. 540 Ma, the rock had heated to ~970°C at ~9 kbar, and lost approximately 12% melt (Stage 3), before decompressing and cooling to the solidus at ~860°C and 6.5 kbar within 10 Ma (Stage 4). The vast majority of monazite and zircon dates record Stage 4 cooling and exhumation. Monazite and zircon rim dates as young as c. 510 Ma record subsolidus cooling (Stage 5) and associated symplectite formation around garnet. U–Pb rutile dates record partial resetting at c. 460 Ma; Zr‐ and Nb‐in‐rutile diffusion chronometry link these dates to a metasomatic event that lasted <1 Ma at ~600°C. In addition to chronicling a near‐complete cycle of metamorphism in southern Madagascar, this study constrains the rates of heating and cooling. We estimate that heating (7–14°C/Ma) outpaced reasonable radiogenic heating rates with modest mantle heat conduction. Therefore, we conclude that elevated mantle heat conduction or injection of mantle‐derived magmas likely contributed to regional ultrahigh‐temperature metamorphism (UHTM). Exhumation and cooling from peak metamorphic conditions to the solidus occurred at rates greater than 0.45 km/Ma and 14°C/Ma.
dc.publisherWiley Periodicals, Inc.
dc.subject.othergranulite
dc.subject.otherlithosphere‐scale shear zone
dc.subject.otherpetrochronology
dc.subject.otherultrahigh‐temperature metamorphism
dc.titleAn extensive record of orogenesis recorded in a Madagascar granulite
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171811/1/jmg12628_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171811/2/jmg12628-sup-0002-Supfigures.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171811/3/jmg12628.pdf
dc.identifier.doi10.1111/jmg.12628
dc.identifier.sourceJournal of Metamorphic Geology
dc.identifier.citedreferencePaton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. ( 2010 ). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11 ( 3 ), 1 – 36. https://doi.org/10.1029/2009gc002618
dc.identifier.citedreferencePattison, D. R. M., Chacko, T., Farquhar, J., & McFarlane, C. R. M. ( 2003 ). Temperatures of granulite‐facies metamorphism: Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44 ( 5 ), 867 – 900. https://doi.org/10.1093/petrology/44.5.867
dc.identifier.citedreferencePattison, D. R. M., Chacko, T., Farquhar, J., McFarlane, C. R. M., & Widney, J. ( 2019 ). Program “RCLC”: Garnet–orthopyroxene Thermobarometry corrected for late Fe–Mg exchange. Journal of Petrology, 60 ( 5 ), 1107 – 1108. https://doi.org/10.1093/petrology/egz018
dc.identifier.citedreferencePili, E., Sheppard, S. M., Lardeaux, J.‐M., Martelat, J.‐E., & Nicollet, C. ( 1997 ). Fluid flow vs. scale of shear zones in the lower continental crust and the granulite paradox. Geology, 25 ( 1 ), 15 – 18. https://doi.org/10.1130/0091‐7613(1997)025%3C0015:FFVSOS%3E2.3.CO;2
dc.identifier.citedreferencePopov, D. V., Spikings, R. A., Scaillet, S., O’Sullivan, G., Chew, D., Badenszki, E., Daly, J. S., Razakamanana, T., & Davies, J. H. ( 2020 ). Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40 Ar/ 39 Ar dating of gem‐quality alkali feldspar and UPb dating of protogenetic apatite inclusions. Chemical Geology, 556, 119841. https://doi.org/10.1016/j.chemgeo.2020.119841
dc.identifier.citedreferenceRaith, M., Rakotondrazafy, R., & Sengupta, P. ( 2008 ). Petrology of corundum‐spinel‐sapphirine‐anorthite rocks (sakenites) from the type locality in southern Madagascar. Journal of Metamorphic Geology, 26 ( 6 ), 647 – 667. https://doi.org/10.1111/j.1525-1314.2008.00779.x
dc.identifier.citedreferenceRosenberg, C. L., & Handy, M. R. ( 2005 ). Experimental deformation of partially melted granite revisited: Implications for the continental crust. Journal of Metamorphic Geology, 23 ( 1 ), 19 – 28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
dc.identifier.citedreferenceRubatto, D. ( 2002 ). Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184 ( 1–2 ), 123 – 138. https://doi.org/10.1016/S0009-2541(01)00355-2
dc.identifier.citedreferenceŠtípská, P., Powell, R., Hacker, B. R., Holder, R., & Kylander‐Clark, A. R. C. ( 2016 ). Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). Journal of Metamorphic Geology, 34 ( 6 ), 551 – 572. https://doi.org/10.1111/jmg.12193
dc.identifier.citedreferenceSpear, F. S., Kohn, M. J., & Cheney, J. T. ( 1999 ). P‐T paths from anatectic pelites. Contributions to Mineralogy and Petrology, 134 ( 1 ), 17 – 32. https://doi.org/10.1007/s004100050466
dc.identifier.citedreferenceStepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. ( 2012 ). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300, 200 – 220.
dc.identifier.citedreferenceStern, R. J. ( 1994 ). Arc‐assembly and continental collision in the Neoproterozoic African Orogen: Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22, 319 – 351. https://doi.org/10.1146/annurev.ea.22.050194.001535
dc.identifier.citedreferenceTaylor, S. R., & McLennan, S. M. ( 1995 ). The geochemical evolution of the continental crust. Reviews of Geophysics, 33 ( 2 ), 241 – 265. https://doi.org/10.1029/95RG00262
dc.identifier.citedreferenceThomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K., & Lanzirotti, A. ( 2010 ). TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160 ( 5 ), 743 – 759. https://doi.org/10.1007/s00410-010-0505-3
dc.identifier.citedreferenceThomas, J. B., Watson, E. B., Spear, F. S., & Wark, D. A. ( 2015 ). TitaniQ recrystallized: Experimental confirmation of the original Ti‐in‐quartz calibrations. Contributions to Mineralogy and Petrology, 169 ( 3 ), 27. https://doi.org/10.1007/s00410-015-1120-0
dc.identifier.citedreferenceTucker, R. D., Roig, J. Y., Moine, B., Delor, C., & Peters, S. G. ( 2014 ). A geological synthesis of the Precambrian shield in Madagascar. Journal of African Earth Sciences, 94, 9 – 30. https://doi.org/10.1016/j.jafrearsci.2014.02.001
dc.identifier.citedreferenceTunini, L., Jiménez‐Munt, I., Fernandez, M., Vergés, J., Villaseñor, A., Melchiorre, M., & Afonso, J. C. ( 2016 ). Geophysical‐petrological model of the crust and upper mantle in the India‐Eurasia collision zone. Tectonics, 35 ( 7 ), 1642 – 1669.
dc.identifier.citedreferenceWhite, R. W., & Powell, R. ( 2002 ). Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology, 20 ( 7 ), 621 – 632.
dc.identifier.citedreferenceWhite, R. W., Powell, R., & Halpin, J. A. ( 2004 ). Spatially‐focussed melt formation in aluminous metapelites from Broken Hill, Australia. Journal of Metamorphic Geology, 22 ( 9 ), 825 – 845.
dc.identifier.citedreferenceWhite, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., & Green, E. C. R. ( 2014 ). New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32 ( 3 ), 261 – 286. https://doi.org/10.1111/jmg.12071
dc.identifier.citedreferenceWhite, R. W., Powell, R., & Johnson, T. E. ( 2014 ). The effect of Mn on mineral stability in metapelites revisited: New a – x relations for manganese‐bearing minerals. Journal of Metamorphic Geology, 32 ( 8 ), 809 – 828. https://doi.org/10.1111/jmg.12095
dc.identifier.citedreferenceYakymchuk, C. ( 2017 ). Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274, 412 – 426.
dc.identifier.citedreferenceBartoli, O. ( 2017 ). Phase equilibria modelling of residual migmatites and granulites: An evaluation of the melt‐reintegration approach. Journal of Metamorphic Geology, 35 ( 8 ), 919 – 942. https://doi.org/10.1111/jmg.12261
dc.identifier.citedreferenceBeaumont, C., Jamieson, R. A., Nguyen, M. H., & Medvedev, S. ( 2004 ). Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109 ( B6 ), 1 – 29. https://doi.org/10.1029/2003jb002809
dc.identifier.citedreferenceBoger, S. D., Hirdes, W., Ferreira, C. A. M., Jenett, T., Dallwig, R., & Fanning, C. M. ( 2015 ). The 580–520 Ma Gondwana suture of Madagascar and its continuation into Antarctica and Africa. Gondwana Research, 28 ( 3 ), 1048 – 1060. https://doi.org/10.1016/j.gr.2014.08.017
dc.identifier.citedreferenceBoger, S. D., Hirdes, W., Ferreira, C. A. M., Schulte, B., Jenett, T., & Fanning, C. M. ( 2014 ). From passive margin to volcano–sedimentary forearc: The Tonian to Cryogenian evolution of the Anosyen Domain of southeastern Madagascar. Precambrian Research, 247, 159 – 186. https://doi.org/10.1016/j.precamres.2014.04.004
dc.identifier.citedreferenceBoger, S. D., Maas, R., Pastuhov, M., Macey, P. H., Hirdes, W., Schulte, B., Fanning, C. M., Ferreira, C. A. M., Jenett, T., & Dallwig, R. ( 2019 ). The tectonic domains of southern and western Madagascar. Precambrian Research, 327, 144 – 175. https://doi.org/10.1016/j.precamres.2019.03.005
dc.identifier.citedreferenceBoger, S. D., White, R. W., & Schulte, B. ( 2012 ). The importance of iron speciation (Fe +2 /Fe +3 ) in determining mineral assemblages: An example from the high‐grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30 ( 9 ), 997 – 1018. https://doi.org/10.1111/jmg.12001
dc.identifier.citedreferenceChacko, T. ( 1996 ). Ultra‐high temperature metamorphism in the Kerala Khondalite Belt. The Archaean and Proterozoic terrains in southern India within east Gondowana. Gondowana Research Group Memoir, 3, 157 – 165.
dc.identifier.citedreferenceCherniak, D. J. ( 2000 ). Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139, 198 – 207. https://doi.org/10.1007/PL00007671
dc.identifier.citedreferenceCherniak, D. J., Manchester, J., & Watson, E. B. ( 2007 ). Zr and Hf diffusion in rutile. Earth and Planetary Science Letters, 261 ( 1–2 ), 267 – 279. https://doi.org/10.1016/j.epsl.2007.06.027
dc.identifier.citedreferenceClark, C., Fitzsimons, I. C. W., Healy, D., & Harley, S. L. ( 2011 ). How does the continental crust get really hot? Elements, 7 ( 4 ), 235 – 240. https://doi.org/10.2113/gselements.7.4.235
dc.identifier.citedreferenceClark, C., Taylor, R. J., Johnson, T. E., Harley, S. L., Fitzsimons, I. C., & Oliver, L. ( 2019 ). Testing the fidelity of thermometers at ultrahigh temperatures. Journal of Metamorphic Geology, 37 ( 7 ), 917 – 934. https://doi.org/10.1111/jmg.12486
dc.identifier.citedreferenceClemens, J. D., & Vielzeuf, D. ( 1987 ). Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86 ( 2–4 ), 287 – 306. https://doi.org/10.1016/0012-821X(87)90227-5
dc.identifier.citedreferenceCollins, A. S., Kinny, P. D., & Razakamanana, T. ( 2012 ). Depositional age, provenance and metamorphic age of metasedimentary rocks from southern Madagascar. Gondwana Research, 21 ( 2 ), 353 – 361. https://doi.org/10.1016/j.gr.2010.12.006
dc.identifier.citedreferencede Wit, M. J., Bowring, S. A., Ashwal, L. D., Randrianasolo, L. G., Morel, V. P. I., & Rambeloson, R. A. ( 2001 ). Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies. Tectonics, 20 ( 1 ), 1 – 45. https://doi.org/10.1029/2000TC900026
dc.identifier.citedreferenceDohmen, R., Marschall, H. R., Ludwig, T., & Polednia, J. ( 2019 ). Diffusion of Zr, Hf, Nb and Ta in rutile: Effects of temperature, oxygen fugacity, and doping level, and relation to rutile point defect chemistry. Physics and Chemistry of Minerals, 46 ( 3 ), 311 – 332. https://doi.org/10.1007/s00269-018-1005-7
dc.identifier.citedreferenceEngland, P. C., & Thompson, A. B. ( 1984 ). Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25 ( 4 ), 894 – 928. https://doi.org/10.1093/petrology/25.4.894
dc.identifier.citedreferenceFerry, J. M., & Watson, E. B. ( 2007 ). New thermodynamic models and revised calibrations for the Ti‐in‐zircon and Zr‐in‐rutile thermometers. Contributions to Mineralogy and Petrology, 154 ( 4 ), 429 – 437. https://doi.org/10.1007/s00410-007-0201-0
dc.identifier.citedreferenceFitzsimons, I. C. ( 2016 ). Pan–African granulites of Madagascar and southern India: Gondwana assembly and parallels with modern Tibet. Journal of Mineralogical and Petrological Sciences, 111 ( 2 ), 73 – 88. https://doi.org/10.2465/jmps.151117
dc.identifier.citedreferenceFoster, G., Kinny, P., Vance, D., Prince, C., & Harris, N. ( 2000 ). The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth and Planetary Science Letters, 181, 327 – 340. https://doi.org/10.1016/S0012-821X(00)00212-0
dc.identifier.citedreferenceFritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., & Kusky, T. M. ( 2013 ). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65 – 106. https://doi.org/10.1016/j.jafrearsci.2013.06.004
dc.identifier.citedreferenceGAF‐BGR. ( 2008 ). Final report: Réalisation des travaux de cartographie géologique de Madagascar, révision approfondie de la cartographie géologique et minière aux échelles 1/100 000 et 1/500 000 zone Sud. République de Madagascar, Ministère de l’Energie et des Mines EM/SG/DG/UCP/PGRM (162 pp.).
dc.identifier.citedreferenceGanne, J., Nédélec, A., Grégoire, V., Gouy, S., & de Parseval, P. ( 2014 ). Tracking Late‐Pan‐African fluid composition evolution in the ductile crust of Madagascar: Insight from phase relation modelling of retrogressed gneisses (province of Fianarantsoa). Journal of African Earth Sciences, 94, 100 – 110. https://doi.org/10.1016/j.jafrearsci.2013.10.004
dc.identifier.citedreferenceGervais, F., & Crowley, J. L. ( 2017 ). Prograde and near‐peak zircon growth in a migmatitic pelitic schist of the southeastern Canadian Cordillera. Lithos, 282–283, 65 – 81.
dc.identifier.citedreferenceGerya, T. V., Perchuk, L. L., & Burg, J.‐P. ( 2008 ). Transient hot channels: Perpetrating and regurgitating ultrahigh‐pressure, high‐temperature crust–mantle associations in collision belts. Lithos, 103 ( 1–2 ), 236 – 256. https://doi.org/10.1016/j.lithos.2007.09.017
dc.identifier.citedreferenceGiese, J., Berger, A., Schreurs, G., & Gnos, E. ( 2011 ). The timing of the tectono‐metamorphic evolution at the Neoproterozoic‐Phanerozoic boundary in central southern Madagascar. Precambrian Research, 185, 131 – 148. https://doi.org/10.1016/j.precamres.2011.01.002
dc.identifier.citedreferenceGrégoire, V., Nédélec, A., Monié, P., Montel, J.‐M., Ganne, J., & Ralison, B. ( 2009 ). Structural reworking and heat transfer related to the late‐Panafrican Angavo shear zone of Madagascar. Tectonophysics, 477 ( 3–4 ), 197 – 216. https://doi.org/10.1016/j.tecto.2009.03.009
dc.identifier.citedreferenceHinojosa, J. H., & Mickus, K. L. ( 2002 ). Thermoelastic modeling of lithospheric uplift: A finite‐difference numerical solution. Computers & Geosciences, 28 ( 2 ), 155 – 167. https://doi.org/10.1016/S0098-3004(01)00028-0
dc.identifier.citedreferenceHolder, R. M., & Hacker, B. R. ( 2019 ). Fluid‐driven resetting of titanite following ultrahigh‐temperature metamorphism in southern Madagascar. Chemical Geology, 504, 38 – 52. https://doi.org/10.1016/j.chemgeo.2018.11.017
dc.identifier.citedreferenceHolder, R. M., Hacker, B. R., Horton, F., & Rakotondrazafy, A. M. ( 2018 ). Ultrahigh‐temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long‐lived high‐T orogen. Journal of Metamorphic Geology, 36 ( 7 ), 855 – 880. https://doi.org/10.1111/jmg.12316
dc.identifier.citedreferenceHolder, R. M., Sharp, Z. D., & Hacker, B. R. ( 2018 ). LinT, a simplified approach to oxygen‐isotope thermometry and speedometry of high‐grade rocks: An example from ultrahigh‐temperature gneisses of southern Madagascar. Geology, 46 ( 11 ), 931 – 934.
dc.identifier.citedreferenceHolland, T. J. B., & Powell, R. ( 2011 ). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29 ( 3 ), 333 – 383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
dc.identifier.citedreferenceHorstwood, M. S., Foster, G. L., Parrish, R. R., Noble, S. R., & Nowell, G. M. ( 2003 ). Common‐Pb corrected in situ U–Pb accessory mineral geochronology by LA‐MC‐ICP‐MS. Journal of Analytical Atomic Spectrometry, 18 ( 8 ), 837 – 846. https://doi.org/10.1039/B304365G
dc.identifier.citedreferenceHorton, F., Hacker, B., Kylander‐Clark, A., Holder, R., & Jöns, N. ( 2016 ). Focused radiogenic heating of middle crust caused ultrahigh temperatures in southern Madagascar. Tectonics, 35 ( 2 ), 293 – 314. https://doi.org/10.1002/2015TC004040
dc.identifier.citedreferenceJöns, N., & Schenk, V. ( 2011 ). The ultrahigh temperature granulites of southern Madagascar in a polymetamorphic context: Implications for the amalgamation of the Gondwana supercontinent. European Journal of Mineralogy, 23, 127 – 156.
dc.identifier.citedreferenceKelley, S. P., & Wartho, J. A. ( 2000 ). Rapid kimberlite ascent and the significance of Ar‐Ar ages in xenolith phlogopites. Science, 289 ( 5479 ), 609 – 611. https://doi.org/10.1126/science.289.5479.609
dc.identifier.citedreferenceKelsey, D. E., & Hand, M. ( 2015 ). On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6 ( 3 ), 311 – 356. https://doi.org/10.1016/j.gsf.2014.09.006
dc.identifier.citedreferenceKohn, M. J., Penniston‐Dorland, S. C., & Ferreira, J. C. ( 2016 ). Implications of near‐rim compositional zoning in rutile for geothermometry, geospeedometry, and trace element equilibration. Contributions to Mineralogy and Petrology, 171 ( 10 ), 78. https://doi.org/10.1007/s00410-016-1285-1
dc.identifier.citedreferenceKorhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. ( 2013 ). Osumilite–melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P – T – t evolution of the Eastern Ghats Province, I ndia. Journal of Metamorphic Geology, 31 ( 8 ), 881 – 907. https://doi.org/10.1111/jmg.12049
dc.identifier.citedreferenceKošler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G. E., Gerdes, A., Horstwood, M. S., Sircombe, K. N., Sylvester, P. J., & Tiepolo, M. ( 2013 ). U‐Pb detrital zircon analysis—Results of an inter‐laboratory comparison. Geostandards and Geoanalytical Research, 37 ( 3 ), 243 – 259. https://doi.org/10.1111/j.1751-908X.2013.00245.x
dc.identifier.citedreferenceKunz, B. E., Regis, D., & Engi, M. ( 2018 ). Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C? Contributions to Mineralogy and Petrology, 173 ( 3 ). https://doi.org/10.1007/s00410-018-1454-5
dc.identifier.citedreferenceKylander‐Clark, A. R. ( 2017 ). Petrochronology by laser‐ablation inductively coupled plasma mass spectrometry. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 183 – 198. https://doi.org/10.2138/rmg.2017.83.6
dc.identifier.citedreferenceKylander‐Clark, A. R. C., Hacker, B. R., & Cottle, J. M. ( 2013 ). Laser‐ablation split‐stream ICP petrochronology. Chemical Geology, 345, 99 – 112. https://doi.org/10.1016/j.chemgeo.2013.02.019
dc.identifier.citedreferenceLexa, O., Schulmann, K., Janoušek, V., Štípská, P., Guy, A., & Racek, M. ( 2011 ). Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. Journal of Metamorphic Geology, 29 ( 1 ), 79 – 102. https://doi.org/10.1111/j.1525-1314.2010.00906.x
dc.identifier.citedreferenceMarkl, G., Bäuerle, J., & Grujic, D. ( 2000 ). Metamorphic evolution of Pan‐African granulite facies metapelites from Southern Madagascar. Precambrian Research, 102 ( 1 ), 47 – 68. https://doi.org/10.1016/S0301-9268(99)00099-6
dc.identifier.citedreferenceMarschall, H. R., Dohmen, R., & Ludwig, T. ( 2013 ). Diffusion‐induced fractionation of niobium and tantalum during continental crust formation. Earth and Planetary Science Letters, 375, 361 – 371. https://doi.org/10.1016/j.epsl.2013.05.055
dc.identifier.citedreferenceMartelat, J., Nicollet, C., Lardeaux, J., Vidal, G., & Rakotondrazafy, R. ( 1997 ). Lithospheric tectonic structures developed under high‐grade metamorphism in the southern part of Madagascar. Geodinamica ActaRevue de Geologie Dynamique et de Geographie Physique, 10 ( 3 ), 94 – 114.
dc.identifier.citedreferenceStüwe, K. ( 1998 ). Heat sources of Cretaceous metamorphism in the Eastern Alps — a discussion. Tectonophysics, 287 ( 1‐4 ), 251 – 269. https://doi.org/10.1016/s0040-1951(98)80072-3
dc.identifier.citedreferenceMartelat, J.‐E., Cardon, H., Lardeaux, J.‐M., Nicollet, C., Schulmann, K., & Pili, É. ( 2020 ). Geophysical evidences for large‐scale mullion‐type structures at the mantle–crust interface in southern Madagascar: Implications for Neoproterozoic orogeny. International Journal of Earth Sciences, 109 ( 4 ), 1487 – 1500. https://doi.org/10.1007/s00531-020-01840-w
dc.identifier.citedreferenceMartelat, J.‐E., Lardeaux, J.‐M., Nicollet, C., & Rakotondrazafy, R. ( 2000 ). Strain pattern and late Precambrian deformation history in southern Madagascar. Precambrian Research, 102 ( 1 ), 1 – 20. https://doi.org/10.1016/S0301-9268(99)00083-2
dc.identifier.citedreferenceMartelat, J.‐E., Malamoud, K., Cordier, P., Randrianasolo, B., Schulmann, K., & Lardeaux, J.‐M. ( 2012 ). Garnet crystal plasticity in the continental crust, new example from south Madagascar. Journal of Metamorphic Geology, 30 ( 4 ), 435 – 452. https://doi.org/10.1111/j.1525-1314.2012.00974.x
dc.identifier.citedreferenceMartelat, J.‐E., Randrianasolo, B., Schulmann, K., Lardeaux, J.‐M., & Devidal, J.‐L. ( 2014 ). Airborne magnetic data compared to petrology of crustal scale shear zones from southern Madagascar: A tool for deciphering magma and fluid transfer in orogenic crust. Journal of African Earth Sciences, 94, 74 – 85. https://doi.org/10.1016/j.jafrearsci.2013.07.003
dc.identifier.citedreferenceMartin, R. F., Randrianandraisana, A., & Boulvais, P. ( 2014 ). Ampandrandava and similar phlogopite deposits in southern Madagascar: Derivation from a silicocarbonatitic melt of crustal origin. Journal of African Earth Sciences, 94, 111 – 118.
dc.identifier.citedreferenceMontel, J.‐M., Razafimahatratra, D., De Parseval, P., Poitrasson, F., Moine, B., Seydoux‐Guillaume, A.‐M., Pik, R., Arnaud, N., & Gibert, F. ( 2018 ). The giant monazite crystals from Manangotry (Madagascar). Chemical Geology, 484, 36 – 50. https://doi.org/10.1016/j.chemgeo.2017.10.034
dc.identifier.citedreferenceMoyen, J.‐F. ( 2020 ). Granites and crustal heat budget. Geological Society, London, Special Publications, 491 ( 1 ), 77 – 100. https://doi.org/10.1144/SP491-2018-148
dc.identifier.citedreferencePaton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. ( 2011 ). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26 ( 12 ), 2508. https://doi.org/10.1039/c1ja10172b
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.