Show simple item record

Marginal Reefs Under Stress: Physiological Limits Render Galápagos Corals Susceptible to Ocean Acidification and Thermal Stress

dc.contributor.authorThompson, Diane
dc.contributor.authorMcCulloch, Malcolm
dc.contributor.authorCole, Julia E.
dc.contributor.authorReed, Emma V.
dc.contributor.authorD’olivo, Juan P.
dc.contributor.authorDyez, Kelsey
dc.contributor.authorLofverstrom, Marcus
dc.contributor.authorLough, Janice
dc.contributor.authorCantin, Neal
dc.contributor.authorTudhope, Alexander W.
dc.contributor.authorCheung, Anson H.
dc.contributor.authorVetter, Lael
dc.contributor.authorEdwards, R. Lawrence
dc.date.accessioned2022-03-07T03:11:00Z
dc.date.available2023-03-06 22:10:56en
dc.date.available2022-03-07T03:11:00Z
dc.date.issued2022-02
dc.identifier.citationThompson, Diane; McCulloch, Malcolm; Cole, Julia E.; Reed, Emma V.; D’olivo, Juan P. ; Dyez, Kelsey; Lofverstrom, Marcus; Lough, Janice; Cantin, Neal; Tudhope, Alexander W.; Cheung, Anson H.; Vetter, Lael; Edwards, R. Lawrence (2022). "Marginal Reefs Under Stress: Physiological Limits Render Galápagos Corals Susceptible to Ocean Acidification and Thermal Stress." AGU Advances 3(1): n/a-n/a.
dc.identifier.issn2576-604X
dc.identifier.issn2576-604X
dc.identifier.urihttps://hdl.handle.net/2027.42/171815
dc.description.abstractOcean acidification (OA) and thermal stress may undermine corals’ ability to calcify and support diverse reef communities, particularly in marginal environments. Coral calcification depends on aragonite supersaturation (Ω » 1) of the calcifying fluid (cf) from which the skeleton precipitates. Corals actively upregulate pHcf relative to seawater to buffer against changes in temperature and dissolved inorganic carbon, which together control Ωcf. Here we assess the buffering capacity of modern and fossil corals from the Galápagos Islands that have been exposed to sub- optimal conditions, extreme thermal stress, and OA. We demonstrate a significant decline in pHcf and Ωcf since the pre- industrial era, trends which are exacerbated during extreme warm years. These results suggest that there are likely physiological limits to corals’ pH buffering capacity, and that these constraints render marginal reefs particularly susceptible to OA.Plain Language SummaryReef- building corals regulate their internal environment to permit rapid growth, which is critical for creating the structure and function of coral reefs. However, we demonstrate that there are finite limits to the ability of corals to regulate their internal chemistry to optimize growth. This limitation will leave corals susceptible to ocean warming and acidification, particularly in sub- optimal environments. Galápagos corals already display signs of stress and an inability to maintain an optimal internal growth environment from the eighteenth century to today.Key PointsCarbonate saturation of the internal growth medium is reduced in modern Galápagos Porites corals, particularly following warm extremesCorals display similar capacity to regulate their growth medium among sites and time periods, with limited adaptation to acidificationTaken together, these results suggest strict physiological limits to corals’ ability to buffer against changing ocean conditions
dc.publisherSmith
dc.publisherWiley Periodicals, Inc.
dc.subject.othercoral reefs
dc.subject.othercalcification
dc.subject.otherocean acidification
dc.subject.otherheat stress
dc.subject.otherboron isotopes
dc.subject.otherbiomineralization
dc.titleMarginal Reefs Under Stress: Physiological Limits Render Galápagos Corals Susceptible to Ocean Acidification and Thermal Stress
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEarth and Environmental Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/1/2021AV000509-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/2/2021AV000509-sup-0002-Original_Version_of_Manuscript-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/3/2021AV000509-sup-0005-Authors_Response_to_Peer_Review_Comments-S04.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/4/aga220134.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/5/aga220134_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/6/2021AV000509-sup-0004-First_Revision_of_Manuscript_Accepted-S03.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171815/7/2021AV000509-sup-0003-Peer_Review_History-S02.pdf
dc.identifier.doi10.1029/2021AV000509
dc.identifier.sourceAGU Advances
dc.identifier.citedreferenceMehrbach, C., Culberson, C., Hawley, J., & Pytkowicx, R. ( 1973 ). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnology & Oceanography, 18 ( 6 ), 897 - 907. https://doi.org/10.4319/lo.1973.18.6.0897
dc.identifier.citedreferenceManzello, D. P., Enochs, I. C., Bruckner, A., Renaud, P. G., Kolodziej, G., Budd, D. A., et al. ( 2014 ). Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophysical Research Letters, 41 ( 24 ), 9001 - 9008. https://doi.org/10.1002/2014gl062501
dc.identifier.citedreferenceManzello, D. P., Kleypas, J. A., Budd, D. A., Eakin, C. M., Glynn, P. W., & Langdon, C. ( 2008 ). Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high- CO 2 world. Proceedings of the National Academy of Sciences, 105 ( 30 ), 10450 - 10455. https://doi.org/10.1073/pnas.0712167105
dc.identifier.citedreferenceMavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J., & Schott, J. ( 2015 ). Characterization of boron incorporation and speciation in calcite and aragonite from co- precipitation experiments under controlled pH, temperature and precipitation rate. Geochimica et Cosmochimica Acta, 150, 299 - 313. https://doi.org/10.1016/j.gca.2014.10.024
dc.identifier.citedreferenceMcConnaughey, T. ( 1989 ). 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53 ( 1 ), 163 - 171. https://doi.org/10.1016/0016-7037(89)90283-4
dc.identifier.citedreferenceMcCulloch, M., Falter, J., Trotter, J., & Montagna, P. ( 2012 ). Coral resilience to ocean acidification and global warming through pH up- regulation. Nature Climate Change, 2 ( 8 ), 623 - 627. https://doi.org/10.1038/nclimate1473
dc.identifier.citedreferenceMcCulloch, M. T., D- Olivo, J. P., Falter, J., Holcomb, M., & Trotter, J. A. ( 2017 ). Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nature Communications, 8 ( 1 ), 1 - 8. https://doi.org/10.1038/ncomms15686
dc.identifier.citedreferenceMcCulloch, M. T., Holcomb, M., Rankenburg, K., & Trotter, J. A. ( 2014 ). Rapid, high- precision measurements of boron isotopic compositions in marine carbonates. Rapid Communications in Mass Spectrometry, 28 ( 24 ), 2704 - 2712. https://doi.org/10.1002/rcm.7065
dc.identifier.citedreferenceMontagna, P., McCulloch, M., Douville, E., Correa, M. L., Trotter, J., Rodolfo- Metalpa, R., et al. ( 2014 ). Li/Mg systematics in scleractinian corals: Calibration of the thermometer. Geochimica et Cosmochimica Acta, 132, 288 - 310. https://doi.org/10.1016/j.gca.2014.02.005
dc.identifier.citedreferenceMucci, A. ( 1983 ). The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 283 ( 7 ), 780 - 799. https://doi.org/10.2475/ajs.283.7.780
dc.identifier.citedreferenceNoireaux, J., Mavromatis, V., Gaillardet, J., Schott, J., Montouillout, V., Louvat, P., et al. ( 2015 ). Crystallographic control on the boron isotope paleo- pH proxy. Earth and Planetary Science Letters, 430, 398 - 407. https://doi.org/10.1016/j.epsl.2015.07.063
dc.identifier.citedreferenceOtto- Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., et al. ( 2016 ). Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bulletin of the American Meteorological Society, 97 ( 5 ), 735 - 754. https://doi.org/10.1175/bams-d-14-00233.1
dc.identifier.citedreferencePelejero, C., Calvo, E., McCulloch, M. T., Marshall, J. F., Gagan, M. K., Lough, J. M., & Opdyke, B. N. ( 2005 ). Preindustrial to modern interdecadal variability in coral reef pH. Science, 309 ( 5744 ), 2204 - 2207. https://doi.org/10.1126/science.1113692
dc.identifier.citedreferenceReed, E. V., Cole, J. E., Lough, J. M., Thompson, D., & Cantin, N. E. ( 2019 ). Linking climate variability and growth in coral skeletal records from the Great Barrier Reef. Coral Reefs, 38 ( 1 ), 29 - 43. https://doi.org/10.1007/s00338-018-01755-8
dc.identifier.citedreferenceReed, E. V., Thompson, D. M., Cole, J. E., Lough, J. M., Cantin, N. E., Cheung, A. H., & Edwards, R. L. ( 2021 ). Impacts of coral growth on geochemistry: Lessons from the Galápagos Islands. Paleoceanography and Paleoclimatology, 36 ( 4 ), e2020PA004051. https://doi.org/10.1029/2020pa004051
dc.identifier.citedreferenceReynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. ( 2002 ). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15 ( 13 ), 1609 - 1625. https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2
dc.identifier.citedreferenceReynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. ( 2007 ). Daily high- resolution- blended analyses for sea surface temperature. Journal of Climate, 20 ( 22 ), 5473 - 5496. https://doi.org/10.1175/2007jcli1824.1
dc.identifier.citedreferenceRoss, C. L., DeCarlo, T. M., & McCulloch, M. T. ( 2019 ). Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. Global Change Biology, 25 ( 2 ), 431 - 447. https://doi.org/10.1111/gcb.14488
dc.identifier.citedreferenceRoss, C. L., Falter, J. L., & McCulloch, M. T. ( 2017 ). Active modulation of the calcifying fluid carbonate chemistry ( δ 11 B, B/Ca) and seasonally invariant coral calcification at sub- tropical limits. Scientific Reports, 7 ( 1 ), 1 - 11. https://doi.org/10.1038/s41598-017-14066-9
dc.identifier.citedreferenceSayani, H. R., Thompson, D. M., Carilli, J. E., Marchitto, T. M., Chapman, A. U., & Cobb, K. M. ( 2021 ). Reproducibility of coral Mn/Ca- based wind reconstructions at Kiritimati Island and Butaritari Atoll. Geochemistry, Geophysics, Geosystems, 22 ( 3 ), e2020GC009398. https://doi.org/10.1029/2020gc009398
dc.identifier.citedreferenceSchoepf, V., D- Olivo, J. P., Rigal, C., Jung, E. M. U., & McCulloch, M. T. ( 2021 ). Heat stress differentially impacts key calcification mechanisms in reef- building corals. Coral Reefs, 40 ( 2 ), 459 - 471. https://doi.org/10.1007/s00338-020-02038-x
dc.identifier.citedreferenceSchoepf, V., Grottoli, A. G., Levas, S. J., Aschaffenburg, M. D., Baumann, J. H., Matsui, Y., & Warner, M. E. ( 2015 ). Annual coral bleaching and the long- term recovery capacity of coral. Proceedings of the Royal Society B: Biological Sciences, 282 ( 1819 ), 20151887. https://doi.org/10.1098/rspb.2015.1887
dc.identifier.citedreferenceSen, S., Stebbins, J., Hemming, N., & Ghosh, B. ( 1994 ). Coordination environments of B impurities in calcite and aragonite polymorphs: A 11 B MAS NMR study. American Mineralogist, 79 ( 9- 10 ), 819 - 825.
dc.identifier.citedreferenceSevilgen, D. S., Venn, A. A., Hu, M. Y., Tambutté, E., de Beer, D., Planas- Bielsa, V., & Tambutté, S. ( 2019 ). Full in vivo characterization of carbonate chemistry at the site of calcification in corals. Science Advances, 5 ( 1 ), eaau7447. https://doi.org/10.1126/sciadv.aau7447
dc.identifier.citedreferenceShen, C.- C., Edwards, R. L., Cheng, H., Dorale, J. A., Thomas, R. B., Moran, S. B., & Edmonds, H. N. ( 2002 ). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185 ( 3- 4 ), 165 - 178. https://doi.org/10.1016/s0009-2541(01)00404-1
dc.identifier.citedreferenceShen, G. T., Cole, J. E., Lea, D. W., Linn, L. J., McConnaughey, T. A., & Fairbanks, R. G. ( 1992 ). Surface ocean variability at Galapagos from 1936- 1982: Calibration of geochemical tracers in corals. Paleoceanography, 7 ( 5 ), 563 - 588. https://doi.org/10.1029/92pa01825
dc.identifier.citedreferenceSpalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & Zu Ermgassen, P. ( 2017 ). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104 - 113. https://doi.org/10.1016/j.marpol.2017.05.014
dc.identifier.citedreferenceSutton, A. J., Feely, R. A., Maenner- Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., et al. ( 2019 ). Autonomous seawater pCO 2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends ( 1 ed., Vol. 11, pp. 421 - 439 ). Earth System Science Data.
dc.identifier.citedreferenceSutton, A. J., Feely, R. A., Sabine, C. L., McPhaden, M. J., Takahashi, T., Chavez, F. P., et al. ( 2014 ). Natural variability and anthropogenic change in equatorial Pacific surface ocean pCO 2 and pH. Global Biogeochemical Cycles, 28 ( 2 ), 131 - 145. https://doi.org/10.1002/2013gb004679
dc.identifier.citedreferenceSwart, P. K. ( 1983 ). Carbon and oxygen isotope fractionation in Scleractinian corals: A review. Earth- Science Reviews, 19 ( 1 ), 51 - 80. https://doi.org/10.1016/0012-8252(83)90076-4
dc.identifier.citedreferenceThompson, D. M. ( 2021 ). Environmental records from coral skeletons: A decade of novel insights and innovation. Wiley Interdisciplinary Reviews: Climate Change, 13 ( 1 ), e745. https://doi.org/10.1002/wcc.745
dc.identifier.citedreferenceWall, M., Fietzke, J., Crook, E., & Paytan, A. ( 2019 ). Using B isotopes and B/Ca in corals from low saturation springs to constrain calcification mechanisms. Nature Communications, 10 ( 1 ), 1 - 9. https://doi.org/10.1038/s41467-019-11519-9
dc.identifier.citedreferenceWall, M., Fietzke, J., Schmidt, G. M., Fink, A., Hofmann, L., De Beer, D., & Fabricius, K. ( 2016 ). Internal pH regulation facilitates in situ long- term acclimation of massive corals to end- of- century carbon dioxide conditions. Scientific Reports, 6, 30688. https://doi.org/10.1038/srep30688
dc.identifier.citedreferenceWeber, J. N., & Woodhead, P. M. ( 1972 ). Temperature dependence of oxygen- 18 concentration in reef coral carbonates. Journal of Geophysical Research, 77 ( 3 ), 463 - 473. https://doi.org/10.1029/jc077i003p00463
dc.identifier.citedreferenceZeebe, R. E., & Wolf- Gladrow, D. ( 2001 ). CO 2 in seawater: Equilibrium, kinetics, isotopes (No. 65). Gulf Professional Publishing.
dc.identifier.citedreferenceCortés, J. ( 1997 ). Biology and geology of eastern pacific coral reefs. Coral Reefs, 16 ( 1 ), S39 - S46. https://doi.org/10.1007/s003380050240
dc.identifier.citedreferenceAllison, N. ( 2017 ). Reconstructing coral calcification fluid dissolved inorganic carbon chemistry from skeletal boron: An exploration of potential controls on coral aragonite B/Ca. Heliyon, 3 ( 8 ), e00387. https://doi.org/10.1016/j.heliyon.2017.e00387
dc.identifier.citedreferenceAllison, N., Cohen, I., Finch, A. A., Erez, J., & Tudhope, A. W. ( 2014 ). Corals concentrate dissolved inorganic carbon to facilitate calcification. Nature Communications, 5 ( 1 ), 1 - 6. https://doi.org/10.1038/ncomms6741
dc.identifier.citedreferenceAnderson, K. D., Cantin, N. E., Heron, S. F., Pisapia, C., & Pratchett, M. S. ( 2017 ). Variation in growth rates of branching corals along Australia- s Great Barrier Reef. Scientific Reports, 7 ( 1 ), 1 - 13. https://doi.org/10.1038/s41598-017-03085-1
dc.identifier.citedreferenceBeck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., et al. ( 1992 ). Sea- surface temperature from coral skeletal strontium/calcium ratios. Science, 257 ( 5070 ), 644 - 647. https://doi.org/10.1126/science.257.5070.644
dc.identifier.citedreferenceBurton, E. A., & Walter, L. M. ( 1987 ). Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? Geology, 15 ( 2 ), 111 - 114. https://doi.org/10.1130/0091-7613(1987)15<111:rproaa>2.0.co;2
dc.identifier.citedreferenceCarton, J. A., & Giese, B. S. ( 2008 ). A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136 ( 8 ), 2999 - 3017. https://doi.org/10.1175/2007mwr1978.1
dc.identifier.citedreferenceChalk, T., Standish, C., D- Angelo, C., Castillo, K., Milton, J., & Foster, G. ( 2021 ). Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea. Scientific Reports, 11. https://doi.org/10.1038/s41598-020-78778-1
dc.identifier.citedreferenceCheng, H., Edwards, R. L., Shen, C.- C., Polyak, V. J., Asmerom, Y., Woodhead, J., et al. ( 2013 ). Improvements in 230 Th dating, 230 Th and 234 U half- life values, and U- Th isotopic measurements by multi- collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371, 82 - 91. https://doi.org/10.1016/j.epsl.2013.04.006
dc.identifier.citedreferenceCheung, A. H., Cole, J. E., Thompson, D. M., Vetter, L., Jimenez, G., & Tudhope, A. W. ( 2021 ). Fidelity of the coral Sr/Ca paleothermometer following heat stress in the northern Galápagos. Paleoceanography and Paleoclimatology, 13, e2021PA004323. https://doi.org/10.1029/2021PA004323
dc.identifier.citedreferenceClarke, H., D- Olivo, J., Conde, M., Evans, R., & McCulloch, M. ( 2019 ). Coral records of variable stress impacts and possible acclimatization to recent marine heat wave events on the Northwest shelf of Australia. Paleoceanography and Paleoclimatology, 34 ( 11 ), 1672 - 1688. https://doi.org/10.1029/2018pa003509
dc.identifier.citedreferenceClarke, H., D- Olivo, J. P., Falter, J., Zinke, J., Lowe, R., & McCulloch, M. ( 2017 ). Differential response of corals to regional mass- warming events as evident from skeletal Sr/Ca and Mg/Ca ratios. Geochemistry, Geophysics, Geosystems, 18 ( 5 ), 1794 - 1809. https://doi.org/10.1002/2016gc006788
dc.identifier.citedreferenceCorrège, T., Delcroix, T., Récy, J., Beck, W., Cabioch, G., & Le Cornec, F. ( 2000 ). Evidence for stronger El Niño- Southern Oscillation (ENSO) events in a mid- Holocene massive coral. Paleoceanography, 15 ( 4 ), 465 - 470. https://doi.org/10.1029/1999pa000409
dc.identifier.citedreferenceCuny- Guirriec, K., Douville, E., Reynaud, S., Allemand, D., Bordier, L., Canesi, M., et al. ( 2019 ). Coral Li/Mg thermometry: Caveats and constraints. Chemical Geology, 523, 162 - 178. https://doi.org/10.1016/j.chemgeo.2019.03.038
dc.identifier.citedreferenceDarwin, C., & Bonney, T. G. ( 1889 ). The structure and distribution of coral reefs. Smith.
dc.identifier.citedreferenceDeCarlo, T. M., Gaetani, G. A., Holcomb, M., & Cohen, A. L. ( 2015 ). Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochimica et Cosmochimica Acta, 162, 151 - 165. https://doi.org/10.1016/j.gca.2015.04.016
dc.identifier.citedreferenceDeCarlo, T. M., Holcomb, M., & McCulloch, M. T. ( 2018 ). Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences, 15 ( 9 ), 2819 - 2834. https://doi.org/10.5194/bg-15-2819-2018
dc.identifier.citedreferenceDickson, A. G. ( 1990 ). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers, 37 ( 5 ), 755 - 766. https://doi.org/10.1016/0198-0149(90)90004-f
dc.identifier.citedreferenceDickson, A. G., & Millero, F. J. ( 1987 ). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34 ( 10 ), 1733 - 1743. https://doi.org/10.1016/0198-0149(87)90021-5
dc.identifier.citedreferenceDishon, G., Fisch, J., Horn, I., Kaczmarek, K., Bijma, J., Gruber, D. F., et al. ( 2015 ). A novel paleo- bleaching proxy using boron isotopes and high- resolution laser ablation to reconstruct coral bleaching events. Biogeosciences, 12 ( 19 ), 5677 - 5687. https://doi.org/10.5194/bg-12-5677-2015
dc.identifier.citedreferenceD- Olivo, J. P., Ellwood, G., DeCarlo, T. M., & McCulloch, M. T. ( 2019 ). Deconvolving the long- term impacts of ocean acidification and warming on coral biomineralisation. Earth and Planetary Science Letters, 526, 115785. https://doi.org/10.1016/j.epsl.2019.115785
dc.identifier.citedreferenceD- Olivo, J. P., & McCulloch, M. ( 2017 ). Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Scientific Reports, 7 ( 1 ), 1 - 15.
dc.identifier.citedreferenceD- Olivo, J. P., Sinclair, D. J., Rankenburg, K., & McCulloch, M. T. ( 2018 ). A universal multi- trace element calibration for reconstructing sea surface temperatures from long- lived Porites corals: Removing - vital- effects. Geochimica et Cosmochimica Acta, 239, 109 - 135. https://doi.org/10.1016/j.gca.2018.07.035
dc.identifier.citedreferenceEdwards, R. L., Chen, J., & Wasserburg, G. ( 1987 ). 238 U- 234 U- 230 Th- 232 Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81 ( 2- 3 ), 175 - 192. https://doi.org/10.1016/0012-821x(87)90154-3
dc.identifier.citedreferenceFoster, G., Pogge von Strandmann, P. A., & Rae, J. ( 2010 ). Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems, 11 ( 8 ), Q08015. https://doi.org/10.1029/2010gc003201
dc.identifier.citedreferenceGagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W., & Stewart, J. A. ( 2021 ). Controls on boron isotopes in a cold- water coral and the cost of resilience to ocean acidification. Earth and Planetary Science Letters, 554, 116662. https://doi.org/10.1016/j.epsl.2020.116662
dc.identifier.citedreferenceGattuso, J.- P., Kirkwood, W., Barry, J., Cox, E., Gazeau, F., Hansson, L., et al. ( 2014 ). Free- ocean CO 2 enrichment (FOCE) systems: Present status and future developments. Biogeosciences, 11 ( 15 ), 4057 - 4075. https://doi.org/10.5194/bg-11-4057-2014
dc.identifier.citedreferenceGeorgiou, L., Falter, J., Trotter, J., Kline, D. I., Holcomb, M., Dove, S. G., et al. ( 2015 ). pH homeostasis during coral calcification in a free ocean CO 2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. Proceedings of the National Academy of Sciences, 112 ( 43 ), 13219 - 13224. https://doi.org/10.1073/pnas.1505586112
dc.identifier.citedreferenceGlynn, P. W. ( 2001 ). Eastern Pacific coral reef ecosystems. In Coastal marine ecosystems of Latin America (pp. 281 - 305 ). Springer. https://doi.org/10.1007/978-3-662-04482-7_20
dc.identifier.citedreferenceGlynn, P. W., Alvarado, J. J., Banks, S., Cortés, J., Feingold, J. S., Jiménez, C., et al. ( 2017 ). Eastern Pacific coral reef provinces, coral community structure and composition: An overview. In Coral reefs of the eastern tropical Pacific (pp. 107 - 176 ). Springer. https://doi.org/10.1007/978-94-017-7499-4_5
dc.identifier.citedreferenceGlynn, P. W., Cortés- Núñez, J., Guzmán- Espinal, H. M., & Richmond, R. H. ( 1988 ). El Niño (1982- 83) associated coral mortality and relationship to sea surface temperature deviations in the tropical eastern Pacific. Mortalidad de corales asociada con El Niño (1982- 83) y relación con las desviaciones de la temperatura superficial del mar en el Pacífico oriental tropical. In Proceedings of the 6th International Coral Reef Symposium, Australia (Vol. 3, pp. 237 - 243 ).
dc.identifier.citedreferenceGlynn, P. W., Feingold, J. S., Baker, A., Banks, S., Baums, I. B., et al. ( 2018 ). State of corals and coral reefs of the Galápagos Islands (Ecuador): Past, present and future. Marine Pollution Bulletin, 133, 717 - 733. https://doi.org/10.1016/j.marpolbul.2018.06.002
dc.identifier.citedreferenceGuillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., de Beer, D., & Eagle, R. A. ( 2020 ). Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Science Advances, 7 ( 2 ), eaba9958. https://www.science.org/doi/10.1126/sciadv.aba9958
dc.identifier.citedreferenceGuo, W. ( 2019 ). Seawater temperature and buffering capacity modulate coral calcifying pH. Scientific Reports, 9 ( 1 ), 1 - 13. https://doi.org/10.1038/s41598-018-36817-y
dc.identifier.citedreferenceGutjahr, M., Bordier, L., Douville, E., Farmer, J., Foster, G. L., Hathorne, E. C., et al. ( 2021 ). Sub- permil interlaboratory consistency for solution- based boron isotope analyses on marine carbonates. Geostandards and Geoanalytical Research, 45 ( 1 ), 59 - 75. https://doi.org/10.1111/ggr.12364
dc.identifier.citedreferenceHathorne, E. C., Felis, T., Suzuki, A., Kawahata, H., & Cabioch, G. ( 2013 ). Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures. Paleoceanography, 28 ( 1 ), 143 - 152. https://doi.org/10.1029/2012pa002311
dc.identifier.citedreferenceHathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., et al. ( 2013 ). Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochemistry, Geophysics, Geosystems, 14 ( 9 ), 3730 - 3750. https://doi.org/10.1002/ggge.20230
dc.identifier.citedreferenceHemming, N., Guilderson, T., & Fairbanks, R. ( 1998 ). Seasonal variations in the boron isotopic composition of coral: A productivity signal? Global Biogeochemical Cycles, 12 ( 4 ), 581 - 586. https://doi.org/10.1029/98gb02337
dc.identifier.citedreferenceHolcomb, M., DeCarlo, T., Gaetani, G., & McCulloch, M. ( 2016 ). Factors affecting B/Ca ratios in synthetic aragonite. Chemical Geology, 437, 67 - 76. https://doi.org/10.1016/j.chemgeo.2016.05.007
dc.identifier.citedreferenceHolcomb, M., DeCarlo, T., Schoepf, V., Dissard, D., Tanaka, K., & Mcculloch, M. ( 2015 ). Cleaning and pre- treatment procedures for biogenic and synthetic calcium carbonate powders for determination of elemental and boron isotopic compositions. Chemical Geology, 398, 11 - 21. https://doi.org/10.1016/j.chemgeo.2015.01.019
dc.identifier.citedreferenceHumphreys, A. F., Halfar, J., Ingle, J. C., Manzello, D., Reymond, C. E., Westphal, H., & Riegl, B. ( 2018 ). Effect of seawater temperature, pH, and nutrients on the distribution and character of low abundance shallow water benthic foraminifera in the Galápagos. PLoS One, 13 ( 9 ). https://doi.org/10.1371/journal.pone.0202746
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P., et al. ( 2013 ). The community earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 - 1360. https://doi.org/10.1175/bams-d-12-00121.1
dc.identifier.citedreferenceJimenez, G., Cole, J. E., Thompson, D. M., & Tudhope, A. W. ( 2018 ). Northern Galápagos corals reveal twentieth century warming in the eastern tropical Pacific. Geophysical Research Letters, 45 ( 4 ), 1981 - 1988. https://doi.org/10.1002/2017gl075323
dc.identifier.citedreferenceKay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. ( 2015 ). The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96 ( 8 ), 1333 - 1349. https://doi.org/10.1175/bams-d-13-00255.1
dc.identifier.citedreferenceKeeling, C. D. ( 1979 ). The Suess effect: 13 Carbon- 14 Carbon interrelations. Environment International, 2 ( 4- 6 ), 229 - 300. https://doi.org/10.1016/0160-4120(79)90005-9
dc.identifier.citedreferenceKessler, W. S. ( 2006 ). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69 ( 2- 4 ), 181 - 217. https://doi.org/10.1016/j.pocean.2006.03.009
dc.identifier.citedreferenceKlochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., & Tossell, J. A. ( 2006 ). Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248 ( 1- 2 ), 276 - 285. https://doi.org/10.1016/j.epsl.2006.05.034
dc.identifier.citedreferenceKnebel, O., Carvajal, C., Standish, C. D., Vega, E. d. l., Chalk, T. B., Ryan, E. J., & Kench, P. ( 2021 ). Porites calcifying fluid pH on seasonal to diurnal scales. Journal of Geophysical Research: Oceans, 126 ( 3 ), e2020JC016889. https://doi.org/10.1029/2020jc016889
dc.identifier.citedreferenceLauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., et al. ( 2016 ). A new global interior ocean mapped climatology: The 1° à 1° GLODAP version 2. Earth System Science Data, 8, 325 - 340. https://doi.org/10.5194/essd-8-325-2016
dc.identifier.citedreferenceLea, D. W., Shen, G. T., & Boyle, E. A. ( 1989 ). Coralline barium records temporal variability in equatorial Pacific upwelling. Nature, 340 ( 6232 ), 373 - 376. https://doi.org/10.1038/340373a0
dc.identifier.citedreferenceLewis, E., Wallace, D., & Allison, L. J. ( 1998 ). Program developed for CO {sub2} system calculations (Technical Report). Brookhaven National laboratory. Department of Applied Science. https://doi.org/10.2172/639712
dc.identifier.citedreferenceLough, J. M., & Barnes, D. ( 2000 ). Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245 ( 2 ), 225 - 243. https://doi.org/10.1016/s0022-0981(99)00168-9
dc.identifier.citedreferenceLough, J. M. ( 2010 ). Climate records from corals. Wiley Interdisciplinary Reviews: Climate Change, 1 ( 3 ), 318 - 331. https://doi.org/10.1002/wcc.39
dc.identifier.citedreferenceManzello, D. P. ( 2009 ). Reef development and resilience to acute (El Niño warming) and chronic (high- CO 2 ) disturbances in the eastern tropical Pacific: A real- world climate change model. Proceedings of the 11th International Coral Reef Symposium, 1, 1299 - 1304.
dc.identifier.citedreferenceManzello, D. P. ( 2010 ). Ocean acidification hotspots: Spatiotemporal dynamics of the seawater CO 2 system of eastern Pacific coral reefs. Limnology & Oceanography, 55 ( 1 ), 239 - 248. https://doi.org/10.4319/lo.2010.55.1.0239
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.