Show simple item record

Chromosome‐level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis

dc.contributor.authorZhao, Xiaolan
dc.contributor.authorHu, Xiaodi
dc.contributor.authorOuYang, Kunxi
dc.contributor.authorYang, Jing
dc.contributor.authorQue, Qingmin
dc.contributor.authorLong, Jianmei
dc.contributor.authorZhang, Jianxia
dc.contributor.authorZhang, Tong
dc.contributor.authorWang, Xue
dc.contributor.authorGao, Jiayu
dc.contributor.authorHu, Xinquan
dc.contributor.authorYang, Shuqi
dc.contributor.authorZhang, Lisu
dc.contributor.authorLi, Shufen
dc.contributor.authorGao, Wujun
dc.contributor.authorLi, Benping
dc.contributor.authorJiang, Wenkai
dc.contributor.authorNielsen, Erik
dc.contributor.authorChen, Xiaoyang
dc.contributor.authorPeng, Changcao
dc.date.accessioned2022-03-07T03:11:30Z
dc.date.available2023-03-06 22:11:26en
dc.date.available2022-03-07T03:11:30Z
dc.date.issued2022-02
dc.identifier.citationZhao, Xiaolan; Hu, Xiaodi; OuYang, Kunxi; Yang, Jing; Que, Qingmin; Long, Jianmei; Zhang, Jianxia; Zhang, Tong; Wang, Xue; Gao, Jiayu; Hu, Xinquan; Yang, Shuqi; Zhang, Lisu; Li, Shufen; Gao, Wujun; Li, Benping; Jiang, Wenkai; Nielsen, Erik; Chen, Xiaoyang; Peng, Changcao (2022). "Chromosome‐level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis." The Plant Journal (4): 891-908.
dc.identifier.issn0960-7412
dc.identifier.issn1365-313X
dc.identifier.urihttps://hdl.handle.net/2027.42/171830
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherevolution
dc.subject.otherNeolamarckia cadamba
dc.subject.othergenome
dc.subject.othercadambine biosynthesis
dc.subject.otherstrictosidine synthase
dc.subject.othermedicinal plant
dc.titleChromosome‐level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171830/1/tpj15600_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171830/2/tpj15600-sup-0001-FigS1-S14.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171830/3/tpj15600.pdf
dc.identifier.doi10.1111/tpj.15600
dc.identifier.sourceThe Plant Journal
dc.identifier.citedreferenceSalim, V., Yu, F., Altarejos, J. & de Luca, V. ( 2013 ) Virus‐induced gene silencing identifies Catharanthus roseus 7‐deoxyloganic acid‐7‐hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. The Plant Journal, 76, 754 – 765.
dc.identifier.citedreferencePressnitz, D., Fischereder, E.M., Pletz, J., Kofler, C., Hammerer, L., Hiebler, K. et al. ( 2018 ) Asymmetric synthesis of (R)‐1‐Alkyl‐Substituted Tetrahydro‐ß‐carbolines catalyzed by strictosidine synthases. Angewandte Chemie, 130, 10843 – 10847.
dc.identifier.citedreferencePuttick, Mark N. ( 2019 ) MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics, 35, 5321 – 5322.
dc.identifier.citedreferenceQu, Y., Easson, M.E., Simionescu, R., Hajicek, J., Thamm, A.M., Salim, V. et al. ( 2018 ) Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E‐geissoschizine. Proceedings of the National Academy of Sciences of the United States of America, 115, 3180 – 3185.
dc.identifier.citedreferenceRai, A., Hirakawa, H., Nakabayashi, R., Kikuchi, S., Hayashi, K., Rai, M. et al. ( 2021 ) Chromosome‐level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nature Communications, 12, 1 – 19.
dc.identifier.citedreferenceRazafimandimbison, S.G. ( 2002 ) A systematic revision of Breonia (Rubiaceae‐Naucleeae). Annals of the Missouri Botanical Garden, 89, 1 – 37.
dc.identifier.citedreferenceRobbrecht, E. & Manen, J.F. ( 2006 ) The major evolutionary lineages of the coffee family (Rubiaceae, Angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and Supertree construction based on rbcL, rps16, trnL‐trnF and atpB‐rbcL Dat. A new classification in two subfamilies, Cinchonoideae and Rubioideae. Systematics and Geography of Plants, 76, 85 – 145.
dc.identifier.citedreferenceRosseleena, R.E., Motoaki, C., Miki, K., Takashi, A., Yoshimi, O., Nobutaka, M. et al. ( 2016 ) An MYB transcription factor regulating specialized metabolisms in Ophiorrhiza pumila. Plant Biotechnology, 33, 1 – 9.
dc.identifier.citedreferenceSabir, J.S., Jansen, R.K., Arasappan, D., Calderon, V., Noutahi, E., Zheng, C. et al. ( 2016 ) The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae. Scientific Reports, 6, 1 – 10.
dc.identifier.citedreferenceSadre, R., Magallanes‐Lundback, M., Pradhan, S., Salim, V., Mesberg, A., Jones, A.D. et al. ( 2016 ) Metabolite diversity in alkaloid biosynthesis: a multilane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata. The Plant Cell, 28, 1926 – 1944.
dc.identifier.citedreferenceSantos, C.L., Angolini, C.F., Neves, K.O., Costa, E.V., de Souza, A.D., Pinheiro, M.L., Koolen, H.H. & da Silva, F.M. ( 2020 ) Molecular networking‐based dereplication of strictosidine‐derived monoterpene indole alkaloids from the curare ingredient Strychnos peckii. Rapid Communications in Mass Spectrometry, 34, e8683.
dc.identifier.citedreferenceSchläpfer, P., Zhang, P., Wang, C., Kim, T., Banf, M., Chae, L., Dreher, K., Chavali, A.K., Nilo‐Poyanco, R., Bernard, T. & Kahn, D. ( 2017 ) Genome‐wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiology, 173, 2041 – 2059.
dc.identifier.citedreferenceScott, M.G. & Madden, T.L. ( 2004 ) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32, 20 – 25.
dc.identifier.citedreferenceShang, Y. & Huang, S. ( 2020 ) Engineering plant cytochrome P450s for enhanced synthesis of natural products: past achievements and future perspectives. Plant Communications, 1, 100012.
dc.identifier.citedreferenceSimao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. ( 2015 ) BUSCO: assessing genome assembly and annotation completeness with single‐copy orthologs. Bioinformatics, 31, 3210 – 3212.
dc.identifier.citedreferenceSingh, S.K., Patra, B., Paul, P., Liu, Y., Pattanaik, S. & Yuan, L. ( 2021 ) BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Direct, 5, e00305.
dc.identifier.citedreferenceStamatakis, Alexandros ( 2014 ) RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30, 1312 – 1313.
dc.identifier.citedreferenceTakayama, H., Tsutsumi, S.‐I., Kitajima, M., Santiarworn, D., Liawruangrath, B. & Aimi, N. ( 2003 ) Gluco‐indole alkaloids from Nauclea cadamba in thailand and transformation of 3α‐dihydrocadambine into the indolopyridine alkaloid, 16‐carbomethoxynaufoline. Chemical and Pharmaceutical Bulletin, 51, 232 – 233.
dc.identifier.citedreferenceTatsis, E.C., Carqueijeiro, I., de Bernonville, T.D., Franke, J., Dang, T.T., Oudin, A., Lanoue, A., Lafontaine, F., Stavrinides, A.K., Clastre, M. & Courdavault, V. ( 2017 ) A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Communications, 8, 316.
dc.identifier.citedreferenceTran, H.T., Ramaraj, T., Furtado, A., Lee, L.S. & Henry, R.J. ( 2018 ) Use of a draft genome of coffee (Coffea arabica) to identify SNP s associated with caffeine content. Plant Biotechnology Journal, 16, 1756 – 1766.
dc.identifier.citedreferenceTrapnell, C., Pachter, L. & Salzberg, S.L. ( 2009 ) TopHat: discovering splice junctions with RNA‐Seq. Bioinformatics, 25, 1105 – 1111.
dc.identifier.citedreferenceTrapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R. et al. ( 2012 ) Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks. Nature Protocols, 7, 562 – 578.
dc.identifier.citedreferenceUrlacher, V.B. & Girhard, M. ( 2019 ) Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends in Biotechnology, 37, 882 – 897.
dc.identifier.citedreferencevan Moerkercke, A., Steensma, P., Gariboldi, I., Espoz, J., Purnama, P.C., Schweizer, F. et al. ( 2016 ) The basic helix‐loop‐helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. The Plant Journal, 88, 3 – 12.
dc.identifier.citedreferencevan Moerkercke, A., Steensma, P., Schweizer, F., Pollier, J., Gariboldi, I., Payne, R. et al. ( 2015 ) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proceedings of the National Academy of Sciences of the United States of America, 112, 8130 – 8135.
dc.identifier.citedreferenceWang, C., Wu, C., Wang, Y., Xie, C., Shi, M., Nile, S. et al. ( 2019 ) Transcription factor OpWRKY3 is involved in the development and biosynthesis of camptothecin and its precursors in Ophiorrhiza pumila hairy roots. International Journal of Molecular Sciences, 20, 3996.
dc.identifier.citedreferenceWang, D.‐P., Wan, H.‐L., Zhang, S. & Yu, J. ( 2009 ) Gamma‐MYN: a new algorithm for estimating Ka and Ks with consideration of variable substitution rates. Biology Direct, 4, 20.
dc.identifier.citedreferenceWang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X. et al. ( 2012 ) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49.
dc.identifier.citedreferenceWeir, B.S. & Cockerham, C.C. ( 1984 ) Estimating F‐statistics for the analysis of population structure. Evolution, 38, 1358 – 1370.
dc.identifier.citedreferenceWu, X.D., Wang, L., He, J., Li, X.Y., Dong, L.B., Gong, X. et al. ( 2013 ) Two new indole alkaloids from Emmenopterys henryi. Helvetica Chimica Acta, 96, 2207 – 2213.
dc.identifier.citedreferenceWu, S., Yang, M. & Xiao, Y. ( 2018 ) Synthetic biology studies of monoterpene indole alkaloids. Chinese Journal of Organic Chemistry, 38, 2243 – 2258.
dc.identifier.citedreferenceXia, L., Ruppert, M., Wang, M., Panjikar, S., Lin, H., Rajendran, C. et al. ( 2012 ) Structures of alkaloid biosynthetic glucosidases decode substrate specificity. ACS Chemical Biology, 7, 226 – 234.
dc.identifier.citedreferenceYamazaki, Y., Sudo, H., Yamazaki, M., Aimi, N. & Saito, K. ( 2003 ) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant and Cell Physiology, 44, 395 – 403.
dc.identifier.citedreferenceYang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. ( 2011 ) GCTA: a tool for genome‐wide complex trait analysis. American Journal of Human Genetics, 88, 76 – 82.
dc.identifier.citedreferenceYang, Z. ( 2007 ) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586 – 1591.
dc.identifier.citedreferenceYang, Y., Li, W., Pang, J., Jiang, L., Qu, X., Pu, X. et al. ( 2019 ) Bifunctional cytochrome P450 enzymes involved in camptothecin biosynthesis. ACS Chemical Biology, 14 ( 6 ), 1091 – 1096.
dc.identifier.citedreferenceYuan, H.‐L., Zhao, Y.‐L., Qin, X.‐J., Liu, Y.‐P., Yu, H.‐F., Zhu, P.‐F. et al. ( 2020 ) Anti‐inflammatory and analgesic activities of Neolamarckia cadamba and its bioactive monoterpenoid indole alkaloids. Journal of Ethnopharmacology, 260, 113103.
dc.identifier.citedreferenceZhang, H., Hedhili, S., Montiel, G., Zhang, Y., Chatel, G., Pré, M. et al. ( 2011 ) The basic helix‐loop‐helix transcription factor CrMYC2 controls the jasmonate‐responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. The Plant Journal, 67, 61 – 71.
dc.identifier.citedreferenceZheng, X., Li, P. & Lu, X. ( 2019 ) Research advances in cytochrome P450‐catalysed pharmaceutical terpenoid biosynthesis in plants. Journal of Experimental Botany, 70, 4619 – 4630.
dc.identifier.citedreferenceZhou, X. & Stephens, M. ( 2012 ) Genome‐wide efficient mixed‐model analysis for association studies. Nature Genetics, 44, 821 – 824.
dc.identifier.citedreferenceZhou, X. & Stephens, M. ( 2014 ) Efficient multivariate linear mixed model algorithms for genome‐wide association studies. Nature Methods, 11, 407 – 409.
dc.identifier.citedreferenceNützmann, H.W., Huang, A. & Osbourn, A. ( 2016 ) Plant metabolic clusters–from genetics to genomics. New Phytologist, 211, 771 – 789.
dc.identifier.citedreferenceAlmeida, A., Dong, A.L., Khakimov, A.B., Bassard, J.E. & Moses, A.T. ( 2018 ) A single oxidosqualene cyclase produces the seco‐triterpenoid a‐onocerin. Plant Physiology, 176 ( 2 ), 1469 – 1484.
dc.identifier.citedreferenceBarleben, L., Panjikar, S., Ruppert, M., Koepke, J. & Stöckigt, J. ( 2007 ) Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. The Plant Cell, 19, 2886 – 2897.
dc.identifier.citedreferenceBarrett, J.C., Fry, B., Maller, J. & Daly, M.J. ( 2005 ) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21, 263 – 265.
dc.identifier.citedreferenceBedi, Y.S., Bir, S.S. & Gill, B.S. ( 1981 ) Cytopalynology of woody taxa of family rubiaceae from North and Central India. Proceedings of the Indian National Science Academy Part B Biological Sciences, 47, 708 – 715.
dc.identifier.citedreferenceBrown, S., Clastre, M., Courdavault, V. & O’Connor, S.E. ( 2015 ) De novo production of the plant‐derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences of the United States of America, 112, 3205 – 3210.
dc.identifier.citedreferenceBurton, J.N., Andrew, A., Patwardhan, R.P., Ruolan, Q., Kitzman, J.O. & Jay, S. ( 2013 ) Chromosome‐scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31, 1119.
dc.identifier.citedreferenceCarqueijeiro, I., Brown, S., Chung, K., Dang, T.T., Walia, M., Besseau, S. et al. ( 2018a ) Two tabersonine 6,7‐epoxidases initiate Lochnericine‐derived alkaloid biosynthesis in Catharanthus roseus. Plant Physiology, 177, 1473 – 1486.
dc.identifier.citedreferenceCarqueijeiro, I., Dugé de Bernonville, T., Lanoue, A., Dang, T.T., Teijaro, C.N., Paetz, C., Billet, K., Mosquera, A., Oudin, A., Besseau, S. & Papon, N. ( 2018b ) A BAHD acyltransferase catalyzing 19‐O‐acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. The Plant Journal, 94, 469 – 484.
dc.identifier.citedreferenceChae, L., Kim, T., Nilo‐Poyanco, R. & Rhee, S.Y. ( 2014 ) Genomic signatures of specialized metabolism in plants. Science, 344, 510 – 513.
dc.identifier.citedreferenceChandel, M., Kumar, M., Sharma, U., Singh, B. & Kaur, S. ( 2017 ) Antioxidant, antigenotoxic and cytotoxic activity of Anthocephalus cadamba (Roxb.) Miq. Bark fractions and their phytochemical analysis using UPLC‐ESI‐QTOF‐MS. Combinatorial Chemistry & High Throughput Screening, 20, 760 – 772.
dc.identifier.citedreferenceChandel, M., Sharma, U., Kumar, N., Singh, B. & Kaur, S. ( 2012 ) Antioxidant activity and identification of bioactive compounds from leaves of Anthocephalus cadamba by ultra‐performance liquid chromatography/electrospray ionization quadrupole time of flight mass spectrometry. Asian Pacific Journal of Tropical Medicine, 5, 977 – 985.
dc.identifier.citedreferenceChandel, M., Sharma, U., Kumar, N., Singh, B. & Kaur, S. ( 2014 ) In vitro studies on the antioxidant/antigenotoxic potential of aqueous fraction from Anthocephalus cadamba bark. In: Perspectives in Cancer Prevention—Translational Cancer Research. India: Springer, pp. 61 – 72.
dc.identifier.citedreferenceChen, Z., Tian, Z., Zhang, Y., Feng, X., Li, Y. & Jiang, H. ( 2020 ) Monoterpene indole alkaloids in Uncaria rhynchophlly (Miq.) Jacks chinensis and their chemotaxonomic significance. Biochemical Systematics and Ecology, 91, 104057.
dc.identifier.citedreferenceChin, C.‐S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A. et al. ( 2016 ) Phased diploid genome assembly with single‐molecule real‐time sequencing. Nature Methods, 13, 1050.
dc.identifier.citedreferenceColinas, M. & Goossens, A. ( 2018 ) Combinatorial transcriptional control of plant specialized metabolism. Trends in Plant Science, 23, 324 – 336.
dc.identifier.citedreferencede Bie, T., Cristianini, N., Demuth, J.P. & Hahn, M.W. ( 2006 ) CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 22, 1269 – 1271.
dc.identifier.citedreferencede Luca, V.D. & Cutler, A.J. ( 1987 ) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiology, 85, 1099 – 1102.
dc.identifier.citedreferencede Luca, V.D., Salim, V., Thamm, A., Masada, S.A. & Yu, F. ( 2014 ) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Current Opinion in Plant Biology, 19, 35 – 42.
dc.identifier.citedreferenceDeng, C., Qin, R., Gao, J., Cao, Y., Li, S., Gao, W. et al. ( 2012 ) Identification of sex chromosome of spinach by physical mapping of 45s rDNAs by FISH. Caryologia, 65, 322 – 327.
dc.identifier.citedreferenceDenoeud, F., Carretero‐Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M. et al. ( 2014 ) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 345, 1181 – 1184.
dc.identifier.citedreferenceDwevedi, A., Sharma, K. & Sharma, Y.K. ( 2014 ) Cadamba: a miraculous tree having enormous pharmacological implications. Pharmacognosy Reviews, 9, 107 – 113.
dc.identifier.citedreferenceEdgar, R.C. ( 2004 ) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792 – 1797.
dc.identifier.citedreferenceEger, E., Simon, A., Sharma, M., Yang, S., Breukelaar, W.B., Grogan, G. et al. ( 2020 ) Inverted binding of non‐natural substrates in strictosidine synthase leads to a switch of stereochemical outcome in enzyme‐catalyzed Pictet‐Spengler reactions. Journal of the American Chemical Society, 142, 792 – 800.
dc.identifier.citedreferenceHanda, S.S., Borris, R.P., Cordell, G.A. & Phillipson, J.D. ( 1983 ) NMR spectral analysis of cadambine from Anthocephalus chinensis. Journal of Natural Products, 46, 325 – 330.
dc.identifier.citedreferenceHu, L., Xu, Z., Wang, M., Fan, R., Yuan, D., Wu, B. et al. ( 2019 ) The chromosome‐scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications, 10, 4702.
dc.identifier.citedreferenceJacobowitz, J.R. & Weng, J.‐K. ( 2020 ) Exploring uncharted territories of plant specialized metabolism in the postgenomic era. Annual Review of Plant Biology, 71, 631 – 658.
dc.identifier.citedreferenceKai, G., Wu, C., Gen, L., Zhang, L., Cui, L. & Ni, X. ( 2015 ) Biosynthesis and biotechnological production of anti‐cancer drug Camptothecin. Phytochemistry Reviews, 14, 525 – 539.
dc.identifier.citedreferenceKareti, S.R. & Subash, P. ( 2020 ) In silico exploration of anti‐Alzheimer’s compounds present in methanolic extract of Neolamarckia cadamba bark using GC–MS/MS. Arabian Journal of Chemistry, 13, 6246 – 6255.
dc.identifier.citedreferenceKautsar, S.A., Suarez Duran, H.G., Blin, K., Osbourn, A. & Medema, M.H. ( 2017 ) plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Research, 45, W55 – W63.
dc.identifier.citedreferenceKellner, F., Kim, J., Clavijo, B.J., Hamilton, J.P., Childs, K.L., Vaillancourt, B. et al. ( 2015 ) Genome‐guided investigation of plant natural product biosynthesis. The Plant Journal, 82, 680 – 692.
dc.identifier.citedreferenceKetudat Cairns, J.R. & Esen, A. ( 2010 ) β‐Glucosidases. Cellular and Molecular Life Sciences, 67, 3389 – 3405.
dc.identifier.citedreferenceKim, D., Langmead, B. & Salzberg, S.L. ( 2015a ) HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12, 357 – 360.
dc.identifier.citedreferenceKim, D., Langmead, B. & Salzberg, S.L. ( 2015b ) HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12, 357 – 360.
dc.identifier.citedreferenceKim, D., Paggi, J.M., Park, C., Bennett, C. & Salzberg, S.L. ( 2019 ) Graph‐based genome alignment and genotyping with HISAT2 and HISAT‐genotype. Nature Biotechnology, 37, 907 – 915.
dc.identifier.citedreferenceKim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. & Salzberg, S.L. ( 2013 ) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14 ( 4 ), 1 – 13.
dc.identifier.citedreferenceLeonelli, L., Brooks, M. & Niyogi, K.K. ( 2017 ) Engineering the lutein epoxide cycle into Arabidopsis thaliana. Proceedings of the National Academy of Ences, 114, 201704373.
dc.identifier.citedreferenceLi, H. & Durbin, R. ( 2009 ) Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics, 25, 1754 – 1760.
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. et al. ( 2009 ) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078 – 2079.
dc.identifier.citedreferenceLi, J., Zhang, D., Ouyang, K. & Chen, X. ( 2018 ) The complete chloroplast genome of the miracle tree Neolamarckia cadamba and its comparison in Rubiaceae family. Biotechnology & Biotechnological Equipment, 32, 1087 – 1097.
dc.identifier.citedreferenceLi, J., Zhang, D., Ouyang, K. & Chen, X. ( 2019 ) High frequency plant regeneration from leaf culture of Neolamarckia cadamba. Plant biotechnology (Tokyo, Japan), 36 ( 1 ), 13 – 19.
dc.identifier.citedreferenceLi, L., Stoeckert, C.J. & Roos, D.S. ( 2003 ) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178 – 2189.
dc.identifier.citedreferenceLi, M., Tian, S., Jin, L., Zhou, G., Li, Y., Zhang, Y. et al. ( 2013 ) Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 45 ( 12 ), 1431 – 1438.
dc.identifier.citedreferenceLi, Y., Leveau, A., Zhao, Q., Feng, Q. & Osbourn, A. ( 2021 ) Subtelomeric assembly of a multi‐gene pathway for antimicrobial defense compounds in cereals. Nature Communications, 12, 2563.
dc.identifier.citedreferenceMa, D. & Constabel, C.P. ( 2019 ) MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science, 24, 275 – 289.
dc.identifier.citedreferenceMa, X., Koepke, J., Panjikar, S., Fritzsch, G. & Stockigt, J. ( 2005 ) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. Journal of Biological Chemistry, 280, 13576 – 13583.
dc.identifier.citedreferenceMa, X., Panjikar, S., Koepke, J., Loris, E. & Stöckigt, J. ( 2006 ) The structure of Rauvolfia serpentina strictosidine synthase is a novel six‐bladed β‐propeller fold in plant proteins. The Plant Cell, 18, 907 – 920.
dc.identifier.citedreferenceMccarthy, A.A. & Mccarthy, J.G. ( 2007 ) The structure of two N‐methyltransferasesfrom the caffeine biosynthetic pathway. Plant Physiology, 144 ( 2 ), 879 – 889.
dc.identifier.citedreferenceMehra, P. & Bawa, K. ( 1969 ) Chromosomal evolution in tropical hardwoods. Evolution, 466 – 481.
dc.identifier.citedreferenceMeijer, A.H., Cardoso, M., Voskuilen, J.T., Waal, A.D., Verpoorte, R. & Hoge, J. ( 1993 ) Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P‐450 reductase, an enzyme essential for reactions catalysed by cytochrome P‐450 mono‐oxygenases in plants. The Plant Journal, 4 ( 1 ), 47 – 60.
dc.identifier.citedreferenceNarasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler‐Smith, C. & Durbin, R. ( 2016 ) BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next‐generation sequencing data. Bioinformatics, 32, 1749 – 1751.
dc.identifier.citedreferencePandey, A. & Negi, P.S. ( 2016 ) Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. Journal of Ethnopharmacology, 181, 118 – 135.
dc.identifier.citedreferenceParra, G., Bradnam, K. & Korf, I. ( 2007 ) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 23, 1061 – 1067.
dc.identifier.citedreferencePaterson, A.H., Bowers, J.E. & Chapman, B.A. ( 2004 ) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences of the United States of America, 101, 9903 – 9908.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.