Show simple item record

Macrophage inflammatory state influences susceptibility to lysosomal damage

dc.contributor.authorWong, Amanda O.
dc.contributor.authorMarthi, Matangi
dc.contributor.authorHaag, Amanda
dc.contributor.authorOwusu, Irene A.
dc.contributor.authorWobus, Christiane E.
dc.contributor.authorSwanson, Joel A.
dc.date.accessioned2022-03-07T03:11:36Z
dc.date.available2023-04-06 22:11:35en
dc.date.available2022-03-07T03:11:36Z
dc.date.issued2022-03
dc.identifier.citationWong, Amanda O.; Marthi, Matangi; Haag, Amanda; Owusu, Irene A.; Wobus, Christiane E.; Swanson, Joel A. (2022). "Macrophage inflammatory state influences susceptibility to lysosomal damage." Journal of Leukocyte Biology 111(3): 629-639.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/171833
dc.description.abstractMacrophages possess mechanisms for reinforcing the integrity of their endolysosomes against damage. This property, termed inducible renitence, was previously observed in murine macrophages stimulated with LPS, peptidoglycan, IFNγ, or TNFα, which suggested roles for renitence in macrophage resistance to infection by membrane‐damaging pathogens. This study analyzed additional inducers of macrophage differentiation for their ability to increase resistance to lysosomal damage by membrane‐damaging particles. Renitence was evident in macrophages activated with LPS plus IFNγ, PGE2, or adenosine, and in macrophages stimulated with IFN‐β, but not in macrophages activated with IL‐4 or IL‐10. These responses indicated roles for macrophage subtypes specialized in host defense and suppression of immune responses, but not those involved in wound healing. Consistent with this pattern, renitence could be induced by stimulation with agonists for TLR, which required the signaling adaptors MyD88 and/or TRIF, and by infection with murine norovirus‐1. Renitence induced by LPS was dependent on cytokine secretion by macrophages. However, no single secreted factor could explain all the induced responses. Renitence induced by the TLR3 agonist Poly(I:C) was mediated in part by the type I IFN response, but renitence induced by Pam3CSK4 (TLR2/1), LPS (TLR4), IFNγ, or TNFα was independent of type 1 IFN signaling. Thus, multiple pathways for inducing macrophage resistance to membrane damage exist and depend on the particular microbial stimulus sensed.Graphical AbstractTLR and cytokine stimulation increase macrophage resistance to lysosomal damage through multiple distinct signaling pathways.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinducible renitence
dc.subject.othermacrophage activation
dc.subject.otherTLR
dc.subject.othertype 1 IFN
dc.titleMacrophage inflammatory state influences susceptibility to lysosomal damage
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171833/1/jlb10987.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171833/2/jlb10987_am.pdf
dc.identifier.doi10.1002/JLB.3A0520-325RR
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferencePerry JW, Wobus CE. Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. J Virol. 2010; 84: 6163 ‐ 76.
dc.identifier.citedreferenceCohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN‐gamma prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response. J Immunol. 2015; 195: 3828 ‐ 37.
dc.identifier.citedreferenceCohen HB, Mosser DM. Extrinsic and intrinsic control of macrophage inflammatory responses. J Leukoc Biol. 2013; 94: 913 ‐ 9.
dc.identifier.citedreferenceCohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM. TLR stimulation initiates a CD39‐based autoregulatory mechanism that limits macrophage inflammatory responses. Blood. 2013; 122: 1935 ‐ 45.
dc.identifier.citedreferenceWeischenfeldt J, Porse B. Bone marrow‐derived macrophages (BMM): isolation and applications. CSH Protoc. 2008; 2008: pdb.prot5080.
dc.identifier.citedreferenceSchmittgen TD, Livak KJ. Analyzing real‐time PCR data by the comparative C(T) method. Nature protocols. 2008; 3: 1101 ‐ 8.
dc.identifier.citedreferenceDavis MJ, Swanson JA. Technical advance: caspase‐1 activation and IL‐1beta release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage. J Leukoc Biol. 2010; 88: 813 ‐ 22.
dc.identifier.citedreferenceWong AO, Marthi M, Mendel ZI, Gregorka B, Swanson MS, Swanson JA. Renitence vacuoles facilitate protection against phagolysosomal damage in activated macrophages. Mol Biol Cell. 2018; 29: 657 ‐ 68.
dc.identifier.citedreferenceThackray LB, Wobus CE, Chachu KA, et al. Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol. 2007; 81: 10460 ‐ 73.
dc.identifier.citedreferenceGonzalez‐Hernandez MB, Bragazzi Cunha J, Wobus CE. Plaque assay for murine norovirus. J Vis Exp. 2012: e4297.
dc.identifier.citedreferenceMosser DM, Zhang X. Activation of murine macrophages. Curr Protoc Immunol. 2008. Chapter 14:Unit 14.2.
dc.identifier.citedreferenceMolofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med. 2006; 203: 1093 ‐ 104.
dc.identifier.citedreferenceYamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88‐independent toll‐like receptor signaling pathway. Science. 2003; 301: 640 ‐ 3.
dc.identifier.citedreferenceKumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011; 30: 16 ‐ 34.
dc.identifier.citedreferenceLeifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll‐like receptor signaling. J Leukoc Biol. 2016; 100: 927 ‐ 41.
dc.identifier.citedreferenceFujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem. 1988; 263: 18545 ‐ 52.
dc.identifier.citedreferenceKlausner RD, Donaldson JG, Lippincott‐Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992; 116: 1071 ‐ 80.
dc.identifier.citedreferenceMcNab F, Mayer‐Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015; 15: 87 ‐ 103.
dc.identifier.citedreferenceSheikh F, Dickensheets H, Gamero AM, Vogel SN, Donnelly RP. An essential role for IFN‐beta in the induction of IFN‐stimulated gene expression by LPS in macrophages. J Leukoc Biol. 2014; 96: 591 ‐ 600.
dc.identifier.citedreferenceGessani S, Belardelli F, Pecorelli A, Puddu P, Baglioni C. Bacterial lipopolysaccharide and gamma interferon induce transcription of beta interferon mRNA and interferon secretion in murine macrophages. J Virol. 1989; 63: 2785 ‐ 9.
dc.identifier.citedreferenceVogel SN, Fertsch D. Endogenous interferon production by endotoxin‐responsive macrophages provides an autostimulatory differentiation signal. Infect Immun. 1984; 45: 417 ‐ 23.
dc.identifier.citedreferenceKagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll‐like receptor 4 to the induction of interferon‐beta. Nat Immunol. 2008; 9: 361 ‐ 8.
dc.identifier.citedreferenceMonroe KM, McWhirter SM, Vance RE. Induction of type I interferons by bacteria. Cell Microbiol. 2010; 12: 881 ‐ 90.
dc.identifier.citedreferenceSchoggins JW. Interferon‐stimulated genes: what do they all do?. Annu Rev Virol. 2019; 6: 567 ‐ 84.
dc.identifier.citedreferenceSkowyra ML, Schlesinger PH, Naismith TV, Hanson PI. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018; 360.
dc.identifier.citedreferenceMcCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW, Colonna M. MDA‐5 recognition of a murine norovirus. PLoS Pathog. 2008; 4: e1000108.
dc.identifier.citedreferenceMosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008; 8: 958 ‐ 69.
dc.identifier.citedreferenceWynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496: 445 ‐ 55.
dc.identifier.citedreferenceFleming BD, Chandrasekaran P, Dillon LA, Dalby E, Suresh R, Sarkar A, et al. The generation of macrophages with anti‐inflammatory activity in the absence of STAT6 signaling. J Leukoc Biol. 2015; 98: 395 ‐ 407.
dc.identifier.citedreferenceMurray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41: 14 ‐ 20.
dc.identifier.citedreferenceDavis MJ, Gregorka B, Gestwicki JE, Swanson JA. Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages. J Immunol. 2012; 189: 4488 ‐ 95.
dc.identifier.citedreferenceKornbluth RS, Oh PS, Munis JR, Cleveland PH, Richman DD. Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. J Exp Med. 1989; 169: 1137 ‐ 51.
dc.identifier.citedreferenceRosenberger CM, Scott MG, Gold MR, Hancock RE, Finlay BB. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol. 2000; 164: 5894 ‐ 904.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.