Show simple item record

Functional traits contribute in opposite directions to taxonomic turnover in northeastern US forests over time

dc.contributor.authorUmaña, María Natalia
dc.contributor.authorZambrano, Jenny
dc.contributor.authorNorden, Natalia
dc.date.accessioned2022-03-07T03:11:46Z
dc.date.available2023-02-06 22:11:44en
dc.date.available2022-03-07T03:11:46Z
dc.date.issued2022-01
dc.identifier.citationUmaña, María Natalia ; Zambrano, Jenny; Norden, Natalia (2022). "Functional traits contribute in opposite directions to taxonomic turnover in northeastern US forests over time." Journal of Vegetation Science (1): n/a-n/a.
dc.identifier.issn1100-9233
dc.identifier.issn1654-1103
dc.identifier.urihttps://hdl.handle.net/2027.42/171837
dc.description.abstractAims: Understanding the processes driving forest dynamics requires considering that species within communities do not respond in a coordinated manner to external factors. We argue that temporal turnover in species composition results from contrasting differences in species life history and functional strategies (demography and seed and wood traits) that might simultaneously promote stability and dynamism by operating on distinct subsets of species. Specifically, fast taxonomic turnover should be promoted by species that take advantage of sporadically available resources, while forest stability should be promoted by species with conservative and stress‐tolerant life histories.Location: Northeastern USA.Methods: We combine demographic information (survival, recruitment) over a 14‐year period from temperate tree communities in the northeastern United States with trait information on species seed mass and wood density as a proxy for their reproductive and resource acquisition strategies, to evaluate the differential contribution of species with contrasting ecological strategies (low vs high seed mass/wood density) to rates of compositional turnover in temperate forests.Results: The apparent dynamism of US forests is mostly driven by high mortality and low recruitment of small‐seeded species and by high mortality and recruitment of low wood density species. Simultaneously, species with the opposite traits, i.e., high seed mass and wood density, contribute more to stability. Our findings suggest that forests dynamics in the northeastern United States are the outcome of opposing contributions of life history and plant traits that simultaneously promote forest stability and rapid taxonomic turnover by operating differentially across tree species.Conclusions: Small‐seeded and low wood density species promote faster forest turnover than species with the opposite traits. Not accounting for these functional differences in community‐level analyses is likely to mask the complex dynamics of temperate forests. This study demonstrates the importance of studying forest composition and structure under a dynamic scope that accounts for differences in functional strategies across species.This study investigates the drivers of temporal shifts in community composition for forest across the northeastern United States. We found that tree taxonomic turnover hinders the contribution of two opposed ecological processes, dynamism and stability, that operate differently on groups of species with distinct functional traits. Small‐seeded and low wood density species promote faster forest turnover than species with the opposite traits. Photo legend: Acer rubrum, United States; Photo credit: Hans Reijnen.
dc.publisherWiley‐Blackwell
dc.subject.othercommunity diversity, community dynamics, seed mass, temperate tree communities, temporal turnover, wood density
dc.titleFunctional traits contribute in opposite directions to taxonomic turnover in northeastern US forests over time
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171837/1/jvs13116-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171837/2/jvs13116.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171837/3/jvs13116-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171837/4/jvs13116-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171837/5/jvs13116-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171837/6/jvs13116_am.pdf
dc.identifier.doi10.1111/jvs.13116
dc.identifier.sourceJournal of Vegetation Science
dc.identifier.citedreferenceParmesan, C. & Yohe, G. ( 2003 ) A globally coherent fingerprint of climate change. Nature, 421, 37 – 42.
dc.identifier.citedreferenceNowacki, G.J. & Abrams, M.D. ( 1992 ) Community, edaphic and historical analysis of mixed oak forest of the Ridge and Valley province in central Pennsylvania. Cananadian Journal of Forest Research, 22, 790 – 800.
dc.identifier.citedreferenceOsazuwa‐Peters, O.L., Wright, S.J. & Zanne, A.E. ( 2017 ) Linking wood traits to vital rates in tropical rainforest trees: insights from comparing sapling and adult wood. American Journal of Botany, 104, 1464 – 1473.
dc.identifier.citedreferencePaillet, F.L. ( 2002 ) Chestnut: history and ecology of a transformed species. Journal of Biogeography, 29, 1517 – 1530.
dc.identifier.citedreferenceRustad, L., Campbell, J., Dukes, J.S., Huntington, T., Fallon Lambert, K., Mohan, J. et al. (2012) Changing climate, changing forests: The impacts of climate change on forests of the northeastern United States and eastern Canada. US Forest Service 48.
dc.identifier.citedreferenceSmith, D.M. & Ashton, P.M.S. ( 1993 ) Early dominance of pioneer hardwood after clearcutting and removal of advanced regeneration. Northern Journal of Applied Forestry, 10, 14 – 19.
dc.identifier.citedreferenceSnell Taylor, S.J., Evans, B.S., White, E.P. & Hurlbert, A.H. ( 2018 ) The prevalence and impact of transient species in ecological communities. Ecology, 99, 1825 – 1835.
dc.identifier.citedreferenceSprugel, D. ( 1976 ) Dynamic structure of wave‐regenerated Abies balsamea forests in the north‐ eastern United States. Journal of Ecology, 64, 889 – 911.
dc.identifier.citedreferenceThompson, J.R., Carpenter, D.N., Cogbill, C.V. & Foster, D.R. ( 2013 ) Four centuries of change in Northeastern United States forests. PLoS One, 8 ( 9 ), e72540.
dc.identifier.citedreferenceTrugman, A.T., Anderegg, L.D.L., Shaw, J.D. & Anderegg, W.R.L. ( 2020 ) Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proceedings of the National Academy of Sciences, 117, 8532 – 8538.
dc.identifier.citedreferenceTurnbull, L.A., Rees, M. & Crawley, M.J. ( 1999 ) Seed mass and the competition/colonization trade‐off: a sowing experiment. Journal of Ecology, 87, 899 – 912.
dc.identifier.citedreferenceUmaña, M.N., Zhang, C., Cao, M., Lin, L. & Swenson, N.G. ( 2017 ) A core‐transient framework for trait‐based community ecology: an example from a tropical tree seedling community. Ecology Letters, 20, 619 – 628.
dc.identifier.citedreferenceVenable, D.L. & Brown, J.S. ( 1988 ) The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. The American Naturalist, 131, 360 – 384.
dc.identifier.citedreferenceViolle, C., Navas, M.‐L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. et al. ( 2007 ) Let the concept of trait be functional! Oikos, 116, 882 – 892.
dc.identifier.citedreferenceWang, W.J., He, H.S., Thompson, F.R., Spetich, M.A. & Fraser, J.S. ( 2018 ) Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change. Science of the Total Environment, 634, 1214 – 1221.
dc.identifier.citedreferenceWang, Y.C., Larsen, C.P.S. & Kronenfeld, B.J. ( 2009 ) Effects of clearance and fragmentation on forest compositional change and recovery after 200 years in western New York. Plant Ecology, 208, 245 – 258.
dc.identifier.citedreferenceWestoby, M. ( 1998 ) A leaf‐height‐seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213 – 227.
dc.identifier.citedreferenceWestoby, M., Jurado, E. & Leishman, M. ( 1992 ) Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368 – 372.
dc.identifier.citedreferenceWright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E. et al. ( 2010 ) Functional traits and the growth‐mortality trade‐off in tropical trees. Ecology, 91, 3664 – 3674.
dc.identifier.citedreferenceRees, M. ( 1995 ) Community structure in sand dune annuals: is seed weight a key quantity? Journal of Ecology, 83, 857 – 863.
dc.identifier.citedreferenceAbrams, M.D. & Mostoller, S.A. ( 1995 ) Gas exchange, leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought. Tree Physiology, 15, 361 – 370.
dc.identifier.citedreferenceAbrams, M.D. & Nowacki, G.J. ( 1992 ) Historical variation in fire, oak recruitment, and post‐logging accelerated succession in central Pennsylvania. Bulleting of the Torrey Botanical Club, 119, 19 – 28.
dc.identifier.citedreferenceAdler, P.B., Salguero‐Gómez, R., Compagnoni, A., Hsu, J.S., Ray‐Mukherjee, J., Mbear‐Ache, C. et al. ( 2014 ) Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences, 111, 10019.
dc.identifier.citedreferenceAnderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L. & Field, C.B. ( 2012 ) The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off. Proceedings of the National Academy of Sciences, 109, 233 – 237.
dc.identifier.citedreferenceArnold, S.J. ( 1983 ) Morphology, performance and fitness. American Zoology, 361, 347 – 361.
dc.identifier.citedreferenceBürgi, M., Russell, E.W.B. & Motzkin, G. ( 2000 ) Effects of postsettlement human activities on forest composition in the north‐eastern United States: a comparative approach. Journal of Biogeography, 27, 1123 – 1138.
dc.identifier.citedreferenceChao, A., Chiu, C.‐H. & Jost, L. ( 2014a ) Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297 – 324.
dc.identifier.citedreferenceChao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. et al.( 2014b ) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45 – 67.
dc.identifier.citedreferenceChapman, J.I. & McEwan, R.W. ( 2016 ) Thirty years of compositional change in an old‐growth temperate forest: the role of topographic gradients in oak‐maple dynamics. PLoS One, 11, 1 – 17.
dc.identifier.citedreferenceChase, J.M., Kraft, N.J.B.B., Smith, K.G., Vellend, M. & Inouye, B.D. ( 2011 ) Using null models to disentangle variation in community dissimilarity from variation in α‐diversity. Ecosphere, 2, art24.
dc.identifier.citedreferenceChave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. ( 2009 ) Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351 – 366.
dc.identifier.citedreferenceCoble, A.P., Vadeboncoeur, M.A., Berry, Z.C., Jennings, K.A., McIntire, C.D., Campbell, J.L. et al. ( 2017 ) Are Northeastern U.S. forests vulnerable to extreme drought? Ecological Processes, 6, 1 – 13.
dc.identifier.citedreferenceCoomes, D.A. & Grubb, P.J. ( 2003 ) Colonization, tolerance, competition and seed‐size variation within functional groups. Trends in Ecology and Evolution, 18, 283 – 291.
dc.identifier.citedreferenceCoyle, J.R., Hurlbert, A.H. & White, E.P. ( 2013 ) Opposing mechanisms drive richness patterns of core and transient bird species. The American Naturalist, 181, e83 – e90.
dc.identifier.citedreferenceDavis, M.B. & Woods, K.D. ( 1989 ) Paleoecology of range limits: beech in the upper peninsula of Michigan. Ecology, 70, 681 – 696.
dc.identifier.citedreferenceDíaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S. et al.( 2016 ) The global spectrum of plant form and function. Nature, 529, 1 – 17.
dc.identifier.citedreferenceEllison, A.M., Bank, M.S., Clinton, B.D., Colburn, E.A., Elliott, K., Ford, C.R. et al. ( 2005 ) Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479 – 486.
dc.identifier.citedreferenceEverham, E.M. III, Myster, R.W. & VanDeGenachte, E. ( 1996 ) Effects of light, moisture, temperature, and litter on the regeneration of five tree species in the tropical montane wet forest of Puerto Rico. American Journal of Botany, 83, 1063 – 1068.
dc.identifier.citedreferenceFoster, D.R. ( 1992 ) Land‐use history (1730–1990) and vegetation dynamics in central New England, USA. Journal of Ecology, 80, 753 – 771.
dc.identifier.citedreferenceFoster, D.R., Motzkin, G. & Slater, B. ( 1998 ) Land‐use history as long‐term broad‐scale disturbance: Regional forest dynamics in central New England. Ecosystems, 1, 96 – 119.
dc.identifier.citedreferenceGleason, H.A. ( 1926 ) The individualistic concept of the plant association. Bulleting of the Torrey Botanical Club, 53, 7 – 26.
dc.identifier.citedreferenceHanski, I. ( 1982 ) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210 – 221.
dc.identifier.citedreferenceHarper, J.L., Lovell, P.H. & Moore, K.G. ( 1970 ) The shapes and sizes of seeds. Annual Review of Ecology and Systematics, 1, 327 – 356.
dc.identifier.citedreferenceHorn, H.S. ( 1966 ) Measurement of "Overlap" in comparative ecological studies. The American Naturalist, 100, 419 – 424.
dc.identifier.citedreferenceHowe, H.F. & Westley, L.C. ( 1986 ) Ecology of pollination and seed dispersal. In: Crawley, M.J. (Ed.) Plant ecology. London, UK: Wiley‐Blackwell, pp. 185 – 215.
dc.identifier.citedreferenceJost, L. ( 2006 ) Entropy and diversity. Oikos, 2, 363 – 375.
dc.identifier.citedreferenceJost, L., Chao, A. & Chazdon, R.L. ( 2011 ) Compositional similarity and β (beta) diversity. In Magurran, A.E. & McGill, B.J. (Eds.) Biological Diversity: Frontiers in Measurement and Assessment ( 1st edition). Oxford University Press, pp. 66 – 84.
dc.identifier.citedreferenceMagurran, A.E. & Henderson, P.A. ( 2003 ) Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714 – 716.
dc.identifier.citedreferenceMcEwan, R.W., Dyer, J.M. & Pederson, N. ( 2011 ) Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography, 34, 244 – 256.
dc.identifier.citedreferenceMcGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. ( 2006 ) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178 – 185.
dc.identifier.citedreferenceMiles, P.D., Brand, G.J., Alerich, C.L., Bednar, L.F., Woudenberg, S.W., Glover, J.F. et al. ( 2001 ) The forest inventory and analysis database description and users manual version 1.0. General Technical Report NC‐218. St. Paul, MN: US Department of Agriculture, Forest Service, North Central Research Station. https://doi.org/10.2737/NC‐GTR‐218
dc.identifier.citedreferenceMoles, A.T. ( 2018 ) Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. Journal of Ecology, 106, 1 – 18.
dc.identifier.citedreferenceMuller‐Landau, H.C. ( 2010 ) The tolerance – fecundity trade‐off and the maintenance of diversity in seed size. Proceedings of the National Academy of Science of the United States of America, 107, 4242 – 4247.
dc.identifier.citedreferenceNorden, N., Boukili, V., Chao, A., Ma, K.H., Letcher, S.G. & Chazdon, R.L. ( 2017 ) Opposing mechanisms affect taxonomic convergence between tree assemblages during tropical forest succession. Ecology Letters, 20, 1448 – 1458.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.