Show simple item record

Interhemispheric Asymmetries in Magnetosphere and Ionosphere Magnetic Field Residuals Between Swarm Observations and Earth Magnetic Field Models

dc.contributor.authorShi, Yining
dc.contributor.authorMoldwin, Mark B.
dc.date.accessioned2022-03-07T03:11:54Z
dc.date.available2023-04-06 22:11:53en
dc.date.available2022-03-07T03:11:54Z
dc.date.issued2022-03
dc.identifier.citationShi, Yining; Moldwin, Mark B. (2022). "Interhemispheric Asymmetries in Magnetosphere and Ionosphere Magnetic Field Residuals Between Swarm Observations and Earth Magnetic Field Models." Journal of Geophysical Research: Space Physics 127(3): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/171841
dc.description.abstractWe present a statistical study of magnetic field vector residual between Swarm observations and two Earth magnetic field models: the 13th generation International Geomagnetic Reference Field (IGRF) model and the CHAOS‐7 model. Statistics of these residuals are important for estimating potential errors for satellite operations when using Earth magnetic models as a reference, as well as for magnetosphere‐ionosphere‐thermosphere studies examining energy input into the system. Magnetic field residuals are calculated as vector differences between observations and model estimation at Swarm satellite positions from 2014 to 2020. Magnetic field residuals for both models increase as geomagnetic activity level increases, and the largest magnitude of vector difference can be around 1800 nT with relatively small angle differences. The CHAOS‐7 model shows lower magnetic field residuals compared to IGRF‐13. North‐south hemispheric asymmetries are seen in magnetic field residuals for high Kp values larger than 6 with the southern hemisphere (SH) having more frequent occurrence of magnetic field residuals larger than 300 nT, especially during SH summer. Most large residual values appear in the high‐latitude region with SH seeing additional large residuals around the South Atlantic Anomaly region. Midnight and noon sectors show the strongest interhemispheric asymmetries. The northern hemisphere shows more frequent occurrence of large residuals above 75° magnetic latitude throughout all local times compared to the SH. Identifying asymmetries in large magnetic residuals under high geomagnetic activity levels is helpful for studying the difference in response to ionospheric disturbances in the two hemispheres.Key PointsComparison between Swarm magnetic field vector observations and Earth magnetic field modelsStatistical magnetic field residual maps show largest differences in high latitude region and around the South Atlantic AnomalyMore frequent occurrence of large magnetic field residual under high geomagnetic activity levels in southern hemisphere
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinterhemispheric asymmetries
dc.subject.othermagnetic perturbation
dc.subject.otherSwarm magnetic field observations
dc.subject.otherIGRF
dc.titleInterhemispheric Asymmetries in Magnetosphere and Ionosphere Magnetic Field Residuals Between Swarm Observations and Earth Magnetic Field Models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171841/1/jgra57049_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171841/2/jgra57049.pdf
dc.identifier.doi10.1029/2021JA030190
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNeubert, T., Mandea, M., Hulot, G., von Frese, R., Primdahl, F., Jørgensen, J. L., et al. ( 2001 ). Ørsted satellite captures high‐precision geomagnetic field data. Eos, Transactions American Geophysical Union, 82 ( 7 ), 81 – 88. https://doi.org/10.1029/01EO00043
dc.identifier.citedreferenceGustafsson, G., Papitashvili, N. E., & Papitashvili, V. O. ( 1992 ). A revised corrected geomagnetic coordinate system for epochs 1985 and 1990. Journal of Atmospheric and Terrestrial Physics, 54, 1609 – 1631. https://doi.org/10.1016/0021-9169(92)90167-J
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1978 ). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research: Space Physics, 83 ( A2 ), 599 – 615. https://doi.org/10.1029/ja083ia02p00599
dc.identifier.citedreferenceIllowsky, B., & Dean, S. ( 2018 ). Introductory statistics (Vol. 6). Open Access Textbooks. Retrieved from https://commons.erau.edu/oer-textbook/6
dc.identifier.citedreferenceKnipp, D., Eriksson, S., Kilcommons, L., Crowley, G., Lei, J., Hairston, M., & Drake, K. ( 2011 ). Extreme Poynting flux in the dayside thermosphere: Examples and statistics. Geophysical Research Letters, 38, L16102. https://doi.org/10.1029/2011GL048302
dc.identifier.citedreferenceLaundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., & Reistad, J. P. ( 2017 ). North‐south asymmetries in earth’s magnetic field. Space Science Reviews, 206 ( 1–4 ), 225 – 257. https://doi.org/10.1007/s11214-016-0273-0
dc.identifier.citedreferenceLerner, G. M., & Shuster, M. D. ( 1981 ). In‐flight magnetometer calibration and attitude determination for near‐Earth spacecraft. Journal of Guidance and Control, 4 ( 5 ), 518 – 522. https://doi.org/10.2514/3.56101
dc.identifier.citedreferenceLühr, H., Rother, M., Köhler, W., Ritter, P., & Grunwaldt, L. ( 2004 ). Thermospheric up‐welling in the cusp region: Evidence from CHAMP observations.  Geophysical Research Letters,  31, L06805. https://doi.org/10.1029/2003GL019314
dc.identifier.citedreferenceLühr, H., & Zhou, Y. L. ( 2020 ). Residuals to the CHAOS‐6 geomagnetic field model caused by magnetospheric currents during enhanced magnetic activity. Geochemistry, Geophysics, Geosystems, 21 ( 6 ) https://doi.org/10.1029/2020GC008976
dc.identifier.citedreferenceMaus, S., Macmillan, S., McLean, S., Hamilton, B., Thomson, A., Nair, M., & Rollins, C. ( 2010 ). The US/UK world magnetic model for 2010–2015.
dc.identifier.citedreferenceMaus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., et al. ( 2006 ). Third generation of the Potsdam magnetic model of the earth (POMME). Geochemistry, Geophysics, Geosystems, 7 ( 7 ), Q07008. https://doi.org/10.1029/2006gc001269
dc.identifier.citedreferenceNeubert, T., & Christiansen, F. ( 2003 ). Small‐scale, field‐aligned currents at the top‐side ionosphere. Geophysical Research Letters, 30 ( 19 ). https://doi.org/10.1029/2003gl017808
dc.identifier.citedreferenceOlsen, N., Friis‐Christensen, E., Floberghagen, R., Alken, P., Beggan, C. D., Chulliat, A., & Visser, P. N. ( 2013 ). The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planets and Space, 65 ( 11 ), 1189 – 1200. https://doi.org/10.5047/eps.2013.07.001
dc.identifier.citedreferencePapitashvili, V. O., Christiansen, F., & Neubert, T. ( 2002 ). A new model of field‐aligned currents derived from high‐precision satellite magnetic field data. Geophysical Research Letters, 29 ( 14 ), 28 – 31. https://doi.org/10.1029/2001gl014207
dc.identifier.citedreferenceReigber, C., Lühr, H., & Schwintzer, P. ( 2002 ). CHAMP mission status. Advances in Space Research, 30 ( 2 ), 129 – 134. https://doi.org/10.1016/S0273-1177(02)00276-4
dc.identifier.citedreferenceRodríguez‐Zuluaga, J., Stolle, C., & Park, J. ( 2017 ). On the direction of the Poynting flux associated with equatorial plasma depletions as derived from Swarm. Geophysical Research Letters, 44, 5884 – 5891. https://doi.org/10.1002/2017GL073385
dc.identifier.citedreferenceShepherd, S. G. ( 2014 ). Altitude‐adjusted corrected geomagnetic coordinates: Definition and functional approximations. Journal of Geophysical Research: Space Physics, 119, 7501 – 7521. https://doi.org/10.1002/2014JA020264
dc.identifier.citedreferenceSlavin, J. A., Le, G., Strangeway, R. J., Wang, Y., Boardsen, S. A., Moldwin, M. B., & Spence, H. E. ( 2008 ). Space Technology 5 multi‐point measurements of near‐Earth magnetic fields: Initial results. Geophysical Research Letters, 35, L02107. https://doi.org/10.1029/2007GL031728
dc.identifier.citedreferenceThébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., & Zvereva, T. ( 2015 ). International geomagnetic reference field: The 12th generation. Earth Planets and Space, 67 ( 1 ), 1 – 19. https://doi.org/10.1186/s40623-015-0228-9
dc.identifier.citedreferenceWaters, C. L., Anderson, B. J., Greenwald, R. A., Barnes, R. J., & Ruohoniemi, J. M. ( 2004 ). High‐latitude Poynting flux from combined Iridium and SuperDARN data. Annales Geophysicae, 22 ( 8 ), 2861 – 2875. Copernicus GmbH. https://doi.org/10.5194/angeo-22-2861-2004
dc.identifier.citedreferenceWeimer, D. R. ( 2001 ). Maps of ionospheric field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. Journal of Geophysical Research: Space Physics, 106 ( A7 ), 12889 – 12902. https://doi.org/10.1029/2000ja000295
dc.identifier.citedreferenceCarbary, J. F. ( 2005 ). A Kp ‐based model of auroral boundaries. Space Weather, 3, S10001. https://doi.org/10.1029/2005SW000162
dc.identifier.citedreferenceAlken, P., Thébault, E., Beggan, C. D., et al. ( 2021 ). International geomagnetic reference field: The thirteenth generation. Earth Planets and Space, 73, 49. https://doi.org/10.1186/s40623-020-01288-x
dc.identifier.citedreferenceAnderson, B. J., Takahashi, K., & Toth, B. A. ( 2000 ). Sensing global Birkeland currents with Iridium® engineering magnetometer data. Geophysical Research Letters, 27 ( 24 ), 4045 – 4048. https://doi.org/10.1029/2000gl000094
dc.identifier.citedreferenceBartels, J., Heck, N. H., & Johnston, H. F. ( 1939 ). The three‐hour‐range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity, 44 ( 4 ), 411 – 454. https://doi.org/10.1029/te044i004p00411
dc.identifier.citedreferenceChaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., & Strangeway, R. J. ( 2003 ). Properties of small‐scale Alfvén waves and accelerated electrons from FAST. Journal of Geophysical Research: Space Physics, 108 ( A4 ). https://doi.org/10.1029/2001ja007537
dc.identifier.citedreferenceFinlay, C. C., Kloss, C., Olsen, N., Hammer, M. D., Tøffner‐Clausen, L., Grayver, A., & Kuvshinov, A. ( 2020 ). The CHAOS‐7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets and Space, 72, 156. https://doi.org/10.1186/s40623-020-01252-9
dc.identifier.citedreferenceFinlay, C. C., Lesur, V., Thébault, E., Vervelidou, F., Morschhauser, A., & Shore, R. ( 2017 ). Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Science Reviews, 206 ( 1 ), 157 – 189. https://doi.org/10.1007/s11214-016-0285-9
dc.identifier.citedreferenceFinlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., & Tøffner‐Clausen, L. ( 2016 ). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS‐6 geomagnetic field model. Earth Planets and Space, 68 ( 1 ), 1 – 18. https://doi.org/10.1186/s40623-016-0486-1
dc.identifier.citedreferenceFriis‐Christensen, E., Finlay, C. C., Hesse, M., & Laundal, K. M. ( 2017 ). Magnetic field perturbations from currents in the dark polar regions during quiet geomagnetic conditions. Space Science Reviews, 206 ( 1–4 ), 281 – 297. https://doi.org/10.1007/s11214-017-0332-1
dc.identifier.citedreferenceFriis‐Christensen, E., Lühr, H., Knudsen, D., & Haagmans, R. ( 2008 ). Swarm—An Earth observation mission investigating geospace. Advances in Space Research, 41 ( 1 ), 210 – 216. https://doi.org/10.1016/j.asr.2006.10.008
dc.identifier.citedreferenceGary, J. B., Heelis, R. A., Hanson, W. B., & Slavin, J. A. ( 1994 ). Field‐aligned Poynting flux observations in the high‐latitude ionosphere. Journal of Geophysical Research, 99 ( A6 ), 11417 – 11427. https://doi.org/10.1029/93JA03167
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.