Show simple item record

DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for single‐photon emission computerized tomography imaging resolution

dc.contributor.authorLi, Zongyu
dc.contributor.authorFessler, Jeffrey A.
dc.contributor.authorMikell, Justin K.
dc.contributor.authorWilderman, Scott J.
dc.contributor.authorDewaraja, Yuni K.
dc.date.accessioned2022-03-07T03:12:01Z
dc.date.available2023-03-06 22:11:59en
dc.date.available2022-03-07T03:12:01Z
dc.date.issued2022-02
dc.identifier.citationLi, Zongyu; Fessler, Jeffrey A.; Mikell, Justin K.; Wilderman, Scott J.; Dewaraja, Yuni K. (2022). "DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for single‐photon emission computerized tomography imaging resolution." Medical Physics 49(2): 1216-1230.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/171844
dc.description.abstractPurposeCurrent methods for patient‐specific voxel‐level dosimetry in radionuclide therapy suffer from a trade‐off between accuracy and computational efficiency. Monte Carlo (MC) radiation transport algorithms are considered the gold standard for voxel‐level dosimetry but can be computationally expensive, whereas faster dose voxel kernel (DVK) convolution can be suboptimal in the presence of tissue heterogeneities. Furthermore, the accuracies of both these methods are limited by the spatial resolution of the reconstructed emission image. To overcome these limitations, this paper considers a single deep convolutional neural network (CNN) with residual learning (named DblurDoseNet) that learns to produce dose‐rate maps while compensating for the limited resolution of SPECT images.MethodsWe trained our CNN using MC‐generated dose‐rate maps that directly corresponded to the true activity maps in virtual patient phantoms. Residual learning was applied such that our CNN learned only the difference between the true dose‐rate map and DVK dose‐rate map with density scaling. Our CNN consists of a 3D depth feature extractor followed by a 2D U‐Net, where the input was 11 slices (3.3 cm) of a given Lu‐177 SPECT/CT image and density map, and the output was the dose‐rate map corresponding to the center slice. The CNN was trained with nine virtual patient phantoms and tested on five different phantoms plus 42 SPECT/CT scans of patients who underwent Lu‐177 DOTATATE therapy.ResultsWhen testing on virtual patient phantoms, the lesion/organ mean dose‐rate error and the normalized root mean square error (NRMSE) relative to the ground truth of the CNN method was consistently lower than DVK and MC, when applied to SPECT images. Compared to DVK/MC, the average improvement for the CNN in mean dose‐rate error was 55%/53% and 66%/56%; and in NRMSE was 18%/17% and 10%/11% for lesion and kidney regions, respectively. Line profiles and dose–volume histograms demonstrated compensation for SPECT resolution effects in the CNN‐generated dose‐rate maps. The ensemble noise standard deviation, determined from multiple Poisson realizations, was improved by 21%/27% compared to DVK/MC. In patients, potential improvements from CNN dose‐rate maps compared to DVK/MC were illustrated qualitatively, due to the absence of ground truth. The trained residual CNN took about 30 s on a single GPU (Tesla V100) to generate a 512×$; times ;$512×$; times ;$130 dose‐rate map for a patient.ConclusionThe proposed residual CNN, trained using phantoms generated from patient images, has potential for real‐time patient‐specific dosimetry in clinical treatment planning due to its demonstrated improvement in accuracy, resolution, noise, and speed over the DVK/MC approaches.
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSPECT resolution effects
dc.subject.othervoxel–level dosimetry
dc.subject.otherdeep learning
dc.subject.otherLu‐177 therapy
dc.titleDblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for single‐photon emission computerized tomography imaging resolution
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171844/1/mp15397_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171844/2/mp15397-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171844/3/mp15397.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171844/4/mp15397-sup-0002-FigS2.pdf
dc.identifier.doi10.1002/mp.15397
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceKingma DP & Ba J Adam: a method for stochastic optimization. IEEE International Conference on Learning Representations (ICLR); San Diego, CA, USA, May 7‐9, 2015.
dc.identifier.citedreferenceXu J, Gong E, Pauly J, Zaharchuk G. 200x low‐dose PET reconstruction using deep learning. arXiv:1712.04119; 2017.
dc.identifier.citedreferenceChen H, Zhang Y, Kalra MK, et al. Low‐dose CT with a residual encoder‐decoder convolutional neural network. IEEE Trans Med Imag. 2017; 36 ( 12 ): 2524 ‐ 2535.
dc.identifier.citedreferenceSegars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010; 37 ( 9 ): 4902 ‐ 4915.
dc.identifier.citedreferenceSoderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F‐FDG: characterization of PET/CT and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nuc Med. 2015; 56 ( 8 ): 1285 ‐ 1291.
dc.identifier.citedreferenceLjungberg M. The SIMIND Monte Carlo program. Monte Carlo Calculations in Nuclear Medicine. CRC Press; 2012. https://doi.org/10.1201/b13073‐8
dc.identifier.citedreferenceSempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Bio. 2000; 45 ( 8 ): 2263 ‐ 2291.
dc.identifier.citedreferenceWilderman SJ, Dewaraja YK. Method for fast CT/SPECT‐based 3D Monte Carlo absorbed dose computations in internal emitter therapy. IEEE Trans Nuc Sci. 2007; 54 ( 1 ): 146 ‐ 151.
dc.identifier.citedreferenceDieudonné A, Hobbs RF, Lebtahi R, et al. Study of the impact of tissue density heterogeneities on 3‐dimensional abdominal dosimetry: comparison between dose kernel convolution and direct Monte Carlo methods. J Nuc Med. 2013; 54 ( 2 ): 236 ‐ 243.
dc.identifier.citedreferenceGötz T, Schmidkonz C, Lang EW, Maier A, Kuwert T, Ritt P. A comparison of methods for adapting 177Lu dose‐voxel‐kernels to tissue inhomogeneities. Phys Med Biol. 2019; 64 ( 24 ) 245011.
dc.identifier.citedreferenceLee MS, Kim JH, Paeng JC, et al. Whole‐body voxel‐based personalized dosimetry: the multiple voxel s‐value approach for heterogeneous media with nonuniform activity distributions. J Nuc Med. 2018; 59 ( 7 ): 1133 ‐ 1139.
dc.identifier.citedreferenceBrice DK. Stopping powers for electrons and positrons, ICRU report 37. Nuc Inst Meth Phys Res. 1985; 12 ( 1 ): 187 ‐ 188.
dc.identifier.citedreferenceJackson P, Beauregard J‐M, Hofman M, Kron T, Hogg A, Hicks R. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging. Med Phys. 2013; 40: 112503.
dc.identifier.citedreferenceSarrut D, Halty A, Badel JN, Ferrer L, Bardiès M. Voxel‐based multimodel fitting method for modeling time activity curves in SPECT images. Med Phys. 2017; 44 ( 12 ): 6280 ‐ 6288.
dc.identifier.citedreferenceLaves M‐H, Tölle M, Ortmaier T. Uncertainty estimation in medical image denoising with Bayesian deep image prior. arXiv:2008.08837; 2020.
dc.identifier.citedreferenceBaumgartner CF, Tezcan KC, Chaitanya K, et al. PHiSeg: capturing uncertainty in medical image segmentation. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer; 2019: 119 ‐ 127.
dc.identifier.citedreferenceYasarla R, Patel VM. Uncertainty guided multi‐scale residual learning‐using a cycle spinning CNN for single image de‐raining: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15‐20 June 2019.
dc.identifier.citedreferenceKendall A, Badrinarayanan V, Cipolla R. Bayesian SegNet: model uncertainty in deep convolutional encoder‐decoder architectures for scene understanding. Proceedings of the British Machine Vision Conference (BMVC), 2017, 57.1–57.12. BMVA Press.
dc.identifier.citedreferenceLakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems, Long Beach, CA, 2017.
dc.identifier.citedreferenceKohl SAA, Romera‐Paredes B, Meyer C, et al. A probabilistic U‐Net for segmentation of ambiguous images. NIPS’18. Curran Associates Inc.; 2018: 6965 ‐ 6975.
dc.identifier.citedreferenceTran‐Gia J, Lassmann M. Characterization of noise and resolution for quantitative 177 Lu SPECT/CT with XSPECT quant. J Nuc Med. 2019; 60 ( 1 ): 50 ‐ 59.
dc.identifier.citedreferenceThomas BA, Cuplov V, Bousse A, et al. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Medic Biol. 2016; 61 ( 22 ): 7975 ‐ 7993.
dc.identifier.citedreferenceXue S, Gafita A, Afshar‐Oromieh A, Eiber M, Rominger A, Shi K. Voxel‐wise prediction of post‐therapy dosimetry for 177Lu‐PSMA I&T therapy using deep learning. J Nuc Med. 2020; 61 (Suppl 1 ): 1424 ‐ 1424.
dc.identifier.citedreferenceMelis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Euro J Nuc Med Mol Imag. 2005; 32 ( 10 ): 1136 ‐ 1143.
dc.identifier.citedreferenceZiabari A, Ye DH, Srivastava S, Sauer KD, Thibault J‐B, Bouman CA. 2.5D deep learning for CT image reconstruction using a multi‐GPU implementation. 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE; 2018: 2044 ‐ 2049. https://doi.org/10.1109/ACSSC.2018.8645364
dc.identifier.citedreferenceUribe CF, Mathotaarachchi S, Gaudet V, et al. Machine learning in nuclear medicine: part 1—introduction. J Nuc Med. 2019; 60 ( 4 ): 451 ‐ 458.
dc.identifier.citedreferenceEberlein U, Cremonesi M, Lassmann M. Individualized dosimetry for theragnostic: necessary, nice to have, or counterproductive? J Nuc Med. 2017; 58 ( 2 ): 97 ‐ 103.
dc.identifier.citedreferenceBolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. J Nuc Med. 1999; 40: 11 ‐ 36.
dc.identifier.citedreferenceKortesniemi M, Tsapaki V, Trianni A, et al. The European Federation of Organizations for Medical Physics (EFOMP) white paper: big data and deep learning in medical imaging and in relation to medical physics profession. Phys Med. 2018; 56: 90 ‐ 93.
dc.identifier.citedreferenceLitjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Imag Anal. 2017; 42: 60 ‐ 88.
dc.identifier.citedreferenceLundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Gür Medizinische Physik. 2019; 29 ( 2 ): 102 ‐ 127.
dc.identifier.citedreferenceSahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019; 46 ( 1 ): 1 ‐ 36.
dc.identifier.citedreferenceCurrie G, Hawk KE, Rohren E, Vial A, Klein R. Machine learning and deep learning in medical imaging: intelligent imaging. J Med Imag Rad Sci. 2019; 50 ( 4 ): 477 ‐ 487.
dc.identifier.citedreferenceRonneberger O, Fischer P, Brox T. U‐Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015; 9351: 234 ‐ 241.
dc.identifier.citedreferenceZukotynski K, Gaudet V, Uribe CF, et al. Machine learning in nuclear medicine: part 2‐neural networks and clinical aspects. J Nuc Med. 2021; 62 ( 1 ): 22 ‐ 29.
dc.identifier.citedreferenceSeifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial intelligence and machine learning in nuclear medicine: future perspectives. Semi Nuc Med. 2021; 51 ( 2 ): 170 ‐ 177.
dc.identifier.citedreferenceVeit‐Haibach P, Buvat I, Herrmann K. EJNMMI supplement: bringing AI and radiomics to nuclear medicine. Euro J Nuc Med Mol Imag. 2019; 46 ( 13 ): 2627 ‐ 2629.
dc.identifier.citedreferenceArabi H, Zaidi H. Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy. Euro J Hybr Imag. 2020; 4 ( 1 ): 1 ‐ 23.
dc.identifier.citedreferenceAkhavanallaf A, Shiri I, Arabi H, Zaidi H. Whole‐body voxel‐based internal dosimetry using deep learning. Euro J Nuc Med Mol Imag. 2021; 48 ( 3 ): 670 ‐ 682.
dc.identifier.citedreferenceLee MS, Hwang D, Kim JH, Lee JS. Deep‐dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci Rep. 2019; 9 ( 1 ): 10308 ‐ 10309.
dc.identifier.citedreferenceGötz TI, Schmidkonz C, Chen S, Al‐Baddai S, Kuwert T, Lang EW. A deep learning approach to radiation dose estimation. Phys Med Bio. 2020; 65 ( 3 ) 035007.
dc.identifier.citedreferenceGötz TI, Lang EW, Schmidkonz C, Kuwert T, Ludwig B. Dose voxel kernel prediction with neural networks for radiation dose estimation. Zeitschrift Für Medizinische Physik. 2021; 31 ( 1 ): 23 ‐ 36.
dc.identifier.citedreferenceHe K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27‐30 June 2016. https://doi.org/10.1109/CVPR.2016.90
dc.identifier.citedreferenceZhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Img Proc. 2017; 26 ( 7 ): 3142 ‐ 3155.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.