Show simple item record

High- dimensional quantile regression: Convolution smoothing and concave regularization

dc.contributor.authorTan, Kean Ming
dc.contributor.authorWang, Lan
dc.contributor.authorZhou, Wen-Xin
dc.date.accessioned2022-03-07T03:12:03Z
dc.date.available2023-03-06 22:12:02en
dc.date.available2022-03-07T03:12:03Z
dc.date.issued2022-02
dc.identifier.citationTan, Kean Ming; Wang, Lan; Zhou, Wen-Xin (2022). "High- dimensional quantile regression: Convolution smoothing and concave regularization." Journal of the Royal Statistical Society: Series B (Statistical Methodology) (1): 205-233.
dc.identifier.issn1369-7412
dc.identifier.issn1467-9868
dc.identifier.urihttps://hdl.handle.net/2027.42/171845
dc.description.abstract- 1- penalized quantile regression (QR) is widely used for analysing high- dimensional data with heterogeneity. It is now recognized that the - 1- penalty introduces non- negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M- estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non- smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution- type smoothed QR with iteratively reweighted - 1- regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted - 1- penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherconvolution
dc.subject.otheroracle property
dc.subject.otherquantile regression
dc.subject.otherminimum signal strength
dc.subject.otherconcave regularization
dc.titleHigh- dimensional quantile regression: Convolution smoothing and concave regularization
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171845/1/rssb12485_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171845/2/rssb12485.pdf
dc.identifier.doi10.1111/rssb.12485
dc.identifier.sourceJournal of the Royal Statistical Society: Series B (Statistical Methodology)
dc.identifier.citedreferenceWainwright, M.J. ( 2019 ) High- dimensional statistics: a non- asymptotic viewpoint. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceLoh, P.- L. & Wainwright, M.J. ( 2015 ) Regularized M - estimators with nonconvexity: statistical and algorithmic theory for local optima. The Journal of Machine Learning Research, 16, 559 - 616.
dc.identifier.citedreferenceMeinshausen, N. & Bühlmann, P. ( 2006 ) High- dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34, 1436 - 1462.
dc.identifier.citedreferenceNdaoud, M. ( 2019 ) Interplay of minimax estimation and minimax support recovery under sparsity. Proceedings of Machine Learning Research, 98, 647 - 668.
dc.identifier.citedreferenceNegahban, S. N., Ravikumar, P., Wainwright, M.J. & Yu, B. ( 2012 ) A unified framework for high- dimensional analysis of M - estimators with decomposable regularizers. Statistical Science, 27, 538 - 557.
dc.identifier.citedreferenceScheetz, T., Kim, K.- Y., Swiderski, R., Pilp, A., Braun, T., Knudtson, K. et al. ( 2006 ) Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proceedings of the National Academy of Sciences, 103, 14429 - 14434.
dc.identifier.citedreferenceSivakumar, V. & Banerjee, A. ( 2017 ) High- dimensional structured quantile regression. Proceedings of Machine Learning Research, 70, 3220 - 3229.
dc.identifier.citedreferenceTibshirani, R. ( 1996 ) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58, 267 - 288.
dc.identifier.citedreferenceWainwright, M.J. ( 2009 ) Sharp thresholds for high- dimensional and noisy recovery using - 1 - constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55, 2183 - 2202.
dc.identifier.citedreferenceWang, L. ( 2013 ) The L 1 regularized LAD estimator for high dimensional linear regression. Journal of Multivariate Analysis, 120, 135 - 151.
dc.identifier.citedreferenceWang, L. & He, X. ( 2021 ) Analysis of global and local optima of regularized quantile regression in high dimension: a subgradient approach. Preprint.
dc.identifier.citedreferenceWang, H., Li, G. & Jiang, G. ( 2007 ) Robust regression shrinkage and consistent variable selection through the LAD- Lasso. The Journal of Business & Economic Statistics, 25, 347 - 355.
dc.identifier.citedreferenceWang, L., Wu, Y. & Li, R. ( 2012 ) Quantile regression for analyzing heterogeneity in ultra- high dimension. Journal of the American Statistical Association, 107, 214 - 222.
dc.identifier.citedreferenceWang, L., Zhang, X. & Gu, Q. ( 2017 ) A unified computational and statistical framework for nonconvex low- rank matrix estimation. Proceedings of Machine Learning Research, 54, 981 - 990.
dc.identifier.citedreferenceWelsh, A.H. ( 1989 ) On M - processes and M - estimation. The Annals of Statistics, 15, 337 - 361.
dc.identifier.citedreferenceWhang, Y.- J. ( 2006 ) Smoothed empirical likelihood methods for quantile regression models. Economic Theory, 22, 173 - 205.
dc.identifier.citedreferenceWu, Y., Ma, Y. & Yin, G. ( 2015 ) Smoothed and corrected score approach to censored quantile regression with measurement errors. Journal of the American Statistical Association, 110, 1670 - 1683.
dc.identifier.citedreferenceZhang, C.- H. ( 2010a ) Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38, 894 - 942.
dc.identifier.citedreferenceZhang, T. ( 2010b ) Analysis of multi- stage convex relaxation for sparse regularization. The Journal of Machine Learning Research, 11, 1081 - 1107.
dc.identifier.citedreferenceZhang, C.- H. & Zhang, T. ( 2012 ) A general theory of concave regularization for high- dimensional sparse estimation problems. Statistical Science, 27, 576 - 593.
dc.identifier.citedreferenceZhao, P. & Yu, B. ( 2006 ) On model selection consistency of Lasso. The Journal of Machine Learning Research, 7, 2541 - 2563.
dc.identifier.citedreferenceZheng, Q., Peng, L. & He, X. ( 2015 ) Globally adaptive quantile regression with ultra- high dimensional data. The Annals of Statistics, 43, 2225 - 2258.
dc.identifier.citedreferenceZou, H. ( 2006 ) The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418 - 1429.
dc.identifier.citedreferenceZou, H. & Li, R. ( 2008 ) One- step sparse estimates in nonconcave regularized likelihood models. The Annals of Statistics, 36, 1509 - 1533.
dc.identifier.citedreferenceBach, F., Jenatton, R., Mairal, J. & Obozinski, G. ( 2012 ) Optimization with sparsity- inducing penalties. Foundations and Trends in Machine Learning, 4, 1 - 106.
dc.identifier.citedreferenceBellec, P.C., Lecué, G. & Tsybakov, A.B. ( 2018 ) Slope meets Lasso: improved oracle bounds and optimality. The Annals of Statistics, 46, 3603 - 3642.
dc.identifier.citedreferenceBelloni, A. & Chernozhukov, V. ( 2011 ) - 1 - penalized quantile regression in high- dimensional sparse models. The Annals of Statistics, 39, 82 - 130.
dc.identifier.citedreferenceBelloni, A., Chen, M., Padilla, O.H.M. & Wang, Z. ( 2019 ) High dimensional latent pandel quantile regression with an application to asset pricing. arXiv preprint arXiv:1912.02151.
dc.identifier.citedreferenceBoyd, S., Parikh, N., Chu, E., Peleato, B. & Eckstein, J. ( 2010 ) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1 - 122.
dc.identifier.citedreferenceBradic, J., Fan, J. & Wang, W. ( 2011 ) Penalized composite quasi- likelihood for ultrahigh dimensional variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 325 - 349.
dc.identifier.citedreferenceBühlmann, P. & van de Geer, S. ( 2011 ) Statistics for high- dimensional data: methods, theory and applications. Heidelberg: Springer.
dc.identifier.citedreferenceChandrasekaran, V., Recht, B., Parrilo, P.A. & Willsky, A.S. ( 2012 ) The convex geometry of linear inverse problems. Foundations of Computational Mathematics 12, 805 - 849.
dc.identifier.citedreferenceFan, J. & Li, R. ( 2001 ) Variable selection via nonconcave regularized likelihood and its oracle properties. Journal of the American statistical Association, 96, 1348 - 1360.
dc.identifier.citedreferenceFan, J. & Lv, J. ( 2008 ) Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 849 - 911.
dc.identifier.citedreferenceFan, J. & Lv, J. ( 2011 ) Nonconcave regularized likelihood with NP- dimensionality. IEEE Transactions on Information Theory, 57, 5467 - 5484.
dc.identifier.citedreferenceFan, J., Xue, L. & Zou, H. ( 2014 ) Strong oracle optimality of folded concave regularized estimation. The Annals of Statistics, 42, 819 - 849.
dc.identifier.citedreferenceFan, J., Liu, H., Sun, Q. & Zhang, T. ( 2018 ) I- LAMM for sparse learning: simultaneous control of algorithmic complexity and statistical error. The Annals of Statistics, 46, 814 - 841.
dc.identifier.citedreferenceFan, J., Li, R., Zhang, C.- H. & Zou, H. ( 2020 ) Statistical foundations of data science. Boca Raton: CRC Press.
dc.identifier.citedreferenceFernandes, M., Guerre, E. & Horta, E. ( 2021 ) Smoothing quantile regressions. Journal of Business & Economic Statistics, 39, 338 - 357.
dc.identifier.citedreferenceGalvao, A.F. & Kato, K. ( 2016 ) Smoothed quantile regression for panel data. Journal of Econometrics, 193, 92 - 112.
dc.identifier.citedreferenceGu, Y., Fan, J., Kong, L., Ma, S. & Zou, H. ( 2018 ) ADMM for high- dimensional sparse regularized quantile regression. Technometrics, 60, 319 - 331.
dc.identifier.citedreferenceHastie, T., Tibshirani, R. & Wainwright, M. ( 2015 ) Statistical learning with sparsity: the Lasso and generalizations. Boca Raton: CRC Press.
dc.identifier.citedreferenceHe, X. & Shao, Q.- M. ( 2000 ) On parameters of increasing dimensions. Journal of Multivariate Analysis, 73, 120 - 135.
dc.identifier.citedreferenceHe, X., Pan, X., Tan, K.M. & Zhou, W.- X. ( 2021 ) Smoothed quantile regression with large- scale inference. J. Econometrics, to appear. Available from: https://doi.org/10.1016/j.jeconom.2021.07.010.
dc.identifier.citedreferenceHorowitz, J. L. ( 1998 ) Bootstrap methods for median regression models. Econometrica, 66, 1327 - 1351.
dc.identifier.citedreferenceKim, Y. & Kwon, S. ( 2012 ) Global optimality of nonconvex regularized estimators. Biometrika, 99, 315 - 325.
dc.identifier.citedreferenceKim, Y., Choi, H. & Oh, H. S. ( 2008 ) Smoothly clipped absolute deviation on high dimensions. Journal of the American Statistical Association, 103, 1665 - 1673.
dc.identifier.citedreferenceKoenker, R. ( 2005 ) Quantile regression. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceKoenker, R. ( 2015 ) Quantreg: quantile regression. R Package Version 5.19. Available from: https://cran.r - project.org/web/packages/quantreg/index.html.
dc.identifier.citedreferenceKoenker, R. & Bassett, G. ( 1978 ) Regression quantiles. Econometrica, 46, 33 - 50.
dc.identifier.citedreferenceKoenker, R., Chernozhukov, V., He, X. & Peng, L., eds. ( 2017 ) Handbook of quantile regression. Boca Raton, FL: CRC Press.
dc.identifier.citedreferenceLahiri, S.N. ( 2021 ) Necessary and sufficient conditions for variable selection consistency of the LASSO in high dimensions. The Annals of Statistics, 49, 820 - 844.
dc.identifier.citedreferenceLeone, F.C., Nelson, L.S. & Nottingham, R.B. ( 1961 ) The folded normal distribution. Technometrics, 3, 543 - 550.
dc.identifier.citedreferenceLoh, P.- L. ( 2017 ) Statistical consistency and asymptotic normality for high- dimensional robust M - estimators. The Annals of Statistics, 45, 866 - 896.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.