Show simple item record

Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking

dc.contributor.authorDemidenko, Michael I.
dc.contributor.authorHuntley, Edward D.
dc.contributor.authorWeigard, Alexander S.
dc.contributor.authorKeating, Daniel P.
dc.contributor.authorBeltz, Adriene M.
dc.date.accessioned2022-03-07T03:12:14Z
dc.date.available2023-04-06 22:12:13en
dc.date.available2022-03-07T03:12:14Z
dc.date.issued2022-03
dc.identifier.citationDemidenko, Michael I.; Huntley, Edward D.; Weigard, Alexander S.; Keating, Daniel P.; Beltz, Adriene M. (2022). "Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking." Journal of Neuroscience Research (3): 762-779.
dc.identifier.issn0360-4012
dc.identifier.issn1097-4547
dc.identifier.urihttps://hdl.handle.net/2027.42/171850
dc.description.abstractAdolescent risk‐taking, including sensation seeking (SS), is often attributed to developmental changes in connectivity among brain regions implicated in cognitive control and reward processing. Despite considerable scientific and popular interest in this neurodevelopmental framework, there are few empirical investigations of adolescent functional connectivity, let alone examinations of its links to SS behavior. The studies that have been done focus on mean‐based approaches and leave unanswered questions about individual differences in neurodevelopment and behavior. The goal of this paper is to take a person‐specific approach to the study of adolescent functional connectivity during a continuous motivational state, and to examine links between connectivity and self‐reported SS behavior in 104 adolescents (MAge = 19.3; SDAge = 1.3). Using Group Iterative Multiple Model Estimation (GIMME), person‐specific connectivity during two neuroimaging runs of a monetary incentive delay task was estimated among 12 a priori brain regions of interest representing reward, cognitive, and salience networks. Two data‐driven subgroups were detected, a finding that was consistent between both neuroimaging runs, but associations with SS were only found in the first run, potentially reflecting neural habituation in the second run. Specifically, the subgroup that had unique connections between reward‐related regions had greater SS and showed a distinctive relation between connectivity strength in the reward regions and SS. These findings provide novel evidence for heterogeneity in adolescent brain‐behavior relations by showing that subsets of adolescents have unique associations between neural motivational processing and SS. Findings have broader implications for future work on reward processing, as they demonstrate that brain‐behavior relations may attenuate across runs.Adolescents completed two runs of the monetary incentive delay (MID) task. Using a data‐driven person‐specific network connectivity approach, Group Iterative Multiple Model Estimation (GIMME), we uncovered two subgroups for MID runs. During Run 01, subgroups significantly related to sensation seeking; however, during Run 02 subgroups did not significantly relate to sensation seeking.
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Guilford Press
dc.subject.otheradolescence
dc.subject.otherfunctional connectivity
dc.subject.othermonetary incentive delay task
dc.subject.othermotivation
dc.subject.otherreward
dc.subject.othersensation seeking
dc.subject.otherfMRI
dc.titleNeural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171850/1/jnr25005.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171850/2/jnr25005_am.pdf
dc.identifier.doi10.1002/jnr.25005
dc.identifier.sourceJournal of Neuroscience Research
dc.identifier.citedreferencePessoa, L. ( 2017 ). A network model of the emotional brain. Trends in Cognitive Sciences, 21 ( 5 ), 357 – 371. https://doi.org/10.1016/j.tics.2017.03.002
dc.identifier.citedreferencePinti, P., Scholkmann, F., Hamilton, A., Burgess, P., & Tachtsidis, I. ( 2019 ). Current status and issues regarding pre‐processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear model framework. Frontiers in Human Neuroscience, 12, 505. https://doi.org/10.3389/fnhum.2018.00505
dc.identifier.citedreferencePlichta, M. M., Schwarz, A. J., Grimm, O., Morgen, K., Mier, D., Haddad, L., Gerdes, A. B. M., Sauer, C., Tost, H., Esslinger, C., Colman, P., Wilson, F., Kirsch, P., & Meyer‐Lindenberg, A. ( 2012 ). Test–retest reliability of evoked BOLD signals from a cognitive–emotive fMRI test battery. NeuroImage, 60 ( 3 ), 1746 – 1758. https://doi.org/10.1016/j.neuroimage.2012.01.129
dc.identifier.citedreferencePoldrack, R. A. ( 2017 ). Precision neuroscience: Dense sampling of individual brains. Neuron, 4, 727 – 729. https://doi.org/10.1016/j.neuron.2017.08.002
dc.identifier.citedreferencePons, P., & Latapy, M. ( 2005 ). Computing communities in large networks using random walks. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences—ISCIS 2005 (pp. 284 – 293 ). Springer. https://doi.org/10.1007/11569596_31
dc.identifier.citedreferencePosner, J., Russell, J. A., & Peterson, B. S. ( 2005 ). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17 ( 3 ), 715 – 734. https://doi.org/10.1017/S0954579405050340
dc.identifier.citedreferencePower, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. ( 2014 ). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320 – 341. https://doi.org/10.1016/j.neuroimage.2013.08.048
dc.identifier.citedreferencePrice, R. B., Beltz, A. M., Woody, M. L., Cummings, L., Gilchrist, D., & Siegle, G. J. ( 2020 ). Neural connectivity subtypes predict discrete attentional‐bias profiles among heterogeneous anxiety patients. Clinical Psychological Science, 8 ( 3 ), 491 – 505. https://doi.org/10.1177/2167702620906149
dc.identifier.citedreferenceR Core Team. ( 2020 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
dc.identifier.citedreferenceRolls, E. T. ( 2014 ). Emotion and decision‐making explained: A précis. Cortex, 59, 185 – 193. https://doi.org/10.1016/j.cortex.2014.01.020
dc.identifier.citedreferenceRomer, D. ( 2010 ). Adolescent risk taking, impulsivity, and brain development: Implications for prevention. Developmental Psychobiology, 52 ( 3 ), 263 – 276. https://doi.org/10.1002/dev.20442
dc.identifier.citedreferenceRoy, M., Shohamy, D., & Wager, T. D. ( 2012 ). Ventromedial prefrontal‐subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16 ( 3 ), 147 – 156. https://doi.org/10.1016/j.tics.2012.01.005
dc.identifier.citedreferenceRubin, D. B. ( 1976 ). Inference and missing data. Biometrika, 63 ( 3 ), 581 – 592. https://doi.org/10.1093/biomet/63.3.581
dc.identifier.citedreferenceRubin, M. ( 2021 ). When to adjust alpha during multiple testing: A consideration of disjunction, conjunction, and individual testing. Synthese, 199 ( 3–4 ), 10969 – 11000. https://doi.org/10.1007/s11229‐021‐03276‐4
dc.identifier.citedreferenceSherman, L., Steinberg, L., & Chein, J. ( 2018 ). Connecting brain responsivity and real‐world risk taking: Strengths and limitations of current methodological approaches. Developmental Cognitive Neuroscience, 33, 27 – 41. https://doi.org/10.1016/j.dcn.2017.05.007
dc.identifier.citedreferenceShulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & Steinberg, L. ( 2016 ). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103 – 117. https://doi.org/10.1016/j.dcn.2015.12.010
dc.identifier.citedreferenceSiegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A., Schlaggar, B. L., & Petersen, S. E. ( 2014 ). Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high‐motion data points. Human Brain Mapping, 35 ( 5 ), 1981 – 1996. https://doi.org/10.1002/hbm.22307
dc.identifier.citedreferenceSilverman, M. H., Jedd, K., & Luciana, M. ( 2015 ). Neural networks involved in adolescent reward processing: An activation likelihood estimation meta‐analysis of functional neuroimaging studies. NeuroImage, 122, 427 – 439. https://doi.org/10.1016/j.neuroimage.2015.07.083
dc.identifier.citedreferenceSmith, S. M. ( 2002 ). Fast robust automated brain extraction. Human Brain Mapping, 17 ( 3 ), 143 – 155. https://doi.org/10.1002/hbm.10062
dc.identifier.citedreferenceSmith, S. M., Miller, K. L., Salimi‐Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., & Woolrich, M. W. ( 2011 ). Network modelling methods for fMRI. NeuroImage, 54 ( 2 ), 875 – 891. https://doi.org/10.1016/j.neuroimage.2010.08.063
dc.identifier.citedreferenceSoares, J. M., Magalhães, R., Moreira, P. S., Sousa, A., Ganz, E., Sampaio, A., Alves, V., Marques, P., & Sousa, N. ( 2016 ). A Hitchhiker’s guide to functional magnetic resonance imaging. Frontiers in Neuroscience, 10, 515. https://doi.org/10.3389/fnins.2016.00515
dc.identifier.citedreferenceSteegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. ( 2016 ). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11 ( 5 ), 702 – 712. https://doi.org/10.1177/1745691616658637
dc.identifier.citedreferenceSteinberg, L. ( 2008 ). A social neuroscience perspective on adolescent risk‐taking. Developmental Review, 28 ( 1 ), 78 – 106. https://doi.org/10.1016/j.dr.2007.08.002
dc.identifier.citedreferenceSteinberg, L. ( 2010 ). A dual systems model of adolescent risk‐taking. Developmental Psychobiology, 52 ( 3 ), 216 – 224. https://doi.org/10.1002/dev.20445
dc.identifier.citedreferenceSzczepanski, S. M., & Knight, R. T. ( 2014 ). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83 ( 5 ), 1002 – 1018. https://doi.org/10.1016/j.neuron.2014.08.011
dc.identifier.citedreferenceSzucs, D., & Ioannidis, J. P. A. ( 2017 ). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLOS Biology, 15 ( 3 ), e2000797. https://doi.org/10.1371/journal.pbio.2000797
dc.identifier.citedreferenceSzucs, D., & Ioannidis, J. P. A. ( 2020 ). Sample size evolution in neuroimaging research: An evaluation of highly‐cited studies (1990–2012) and of latest practices (2017–2018) in high‐impact journals. NeuroImage, 221, 117164. https://doi.org/10.1016/j.neuroimage.2020.117164
dc.identifier.citedreferenceThompson, W. H., Wright, J., & Bissett, P. G. ( 2020 ). Open exploration. Elife, 9, e52157. https://doi.org/10.7554/eLife.52157
dc.identifier.citedreferenceWan, Z., Rolls, E. T., Cheng, W., & Feng, J. ( 2020 ). Sensation‐seeking is related to functional connectivities of the medial orbitofrontal cortex with the anterior cingulate cortex. NeuroImage, 215, 116845. https://doi.org/10.1016/j.neuroimage.2020.116845
dc.identifier.citedreferenceWeigard, A., Beltz, A., Reddy, S. N., & Wilson, S. J. ( 2018 ). Characterizing the role of the pre‐SMA in the control of speed/accuracy trade‐off with directed functional connectivity mapping and multiple solution reduction. Human Brain Mapping, 40 ( 6 ), 1829 – 1843. https://doi.org/10.1002/hbm.24493
dc.identifier.citedreferenceWeiland, B. J., Welsh, R. C., Yau, W.‐Y.‐ W., Zucker, R. A., Zubieta, J.‐K., & Heitzeg, M. M. ( 2013 ). Accumbens functional connectivity during reward mediates sensation‐seeking and alcohol use in high‐risk youth. Drug and Alcohol Dependence, 128 ( 1 ), 130 – 139. https://doi.org/10.1016/j.drugalcdep.2012.08.019
dc.identifier.citedreferenceWilloughby, T., Good, M., Adachi, P. J. C., Hamza, C., & Tavernier, R. ( 2013 ). Examining the link between adolescent brain development and risk taking from a social‐developmental perspective. Brain and Cognition, 83 ( 3 ), 315 – 323. https://doi.org/10.1016/j.bandc.2013.09.008
dc.identifier.citedreferenceZuckerman, M. S., Eysenck, S. B. G., & Eysenck, H. J. ( 1978 ). Sensation seeking in England and America: Cross‐cultural, age, and sex comparisons. Journal of Consulting and Clinical Psychology, 46 ( 1 ), 139 – 149. https://doi.org/10.1037/0022‐006x.46.1.139
dc.identifier.citedreferenceApps, M. A. J., Rushworth, M. F. S., & Chang, S. W. C. ( 2016 ). The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron, 90 ( 4 ), 692 – 707. https://doi.org/10.1016/j.neuron.2016.04.018
dc.identifier.citedreferenceArnett, J. ( 1994 ). Sensation seeking: A new conceptualization and a new scale. Personality and Individual Differences, 16 ( 2 ), 289 – 296. https://doi.org/10.1016/0191‐8869(94)90165‐1
dc.identifier.citedreferenceBalodis, I. M., & Potenza, M. N. ( 2015 ). Anticipatory reward processing in addicted populations: A focus on the monetary incentive delay task. Biological Psychiatry, 77 ( 5 ), 434 – 444. https://doi.org/10.1016/j.biopsych.2014.08.020
dc.identifier.citedreferenceBecht, A. I., & Mills, K. L. ( 2020 ). Modeling individual differences in brain development. Biological Psychiatry, 88 ( 1 ), 63 – 69. https://doi.org/10.1016/j.biopsych.2020.01.027
dc.identifier.citedreferenceBeck, E. D., & Jackson, J. J. ( 2020 ). Consistency and change in idiographic personality: A longitudinal ESM network study. Journal of Personality and Social Psychology, 118 ( 5 ), 1080 – 1100. https://doi.org/10.1037/pspp0000249
dc.identifier.citedreferenceBeltz, A. M. ( 2018 ). Connecting theory and methods in adolescent brain research. Journal of Research on Adolescence, 28 ( 1 ), 10 – 25. https://doi.org/10.1111/jora.12366
dc.identifier.citedreferenceBeltz, A. M., & Gates, K. M. ( 2017 ). Network mapping with GIMME. Multivariate Behavioral Research, 52 ( 6 ), 789 – 804. https://doi.org/10.1080/00273171.2017.1373014
dc.identifier.citedreferenceBeltz, A. M., Gates, K. M., Engels, A. S., Molenaar, P. C. M., Pulido, C., Turrisi, R., Berenbaum, S. A., Gilmore, R. O., & Wilson, S. J. ( 2013 ). Changes in alcohol‐related brain networks across the first year of college: A prospective pilot study using fMRI effective connectivity mapping. Addictive Behaviors, 38 ( 4 ), 2052 – 2059. https://doi.org/10.1016/j.addbeh.2012.12.023
dc.identifier.citedreferenceBeltz, A. M., & Weigard, A. ( 2019 ). Methodological advances in leveraging neuroimaging datasets in adolescent substance use research. Current Addiction Reports, 6 ( 4 ), 495 – 503. https://doi.org/10.1007/s40429‐019‐00275‐x
dc.identifier.citedreferenceBerridge, K. C. ( 2019 ). Affective valence in the brain: Modules or modes? Nature Reviews Neuroscience, 20 ( 4 ), 225 – 234. https://doi.org/10.1038/s41583‐019‐0122‐8
dc.identifier.citedreferenceBjork, J. M., & Pardini, D. A. ( 2015 ). Who are those “risk‐taking adolescents”? Individual differences in developmental neuroimaging research. Developmental Cognitive Neuroscience, 11, 56 – 64. https://doi.org/10.1016/j.dcn.2014.07.008
dc.identifier.citedreferenceBjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. ( 2010 ). Adolescents, adults and rewards: Comparing motivational neurocircuitry recruitment using fMRI. PLoS One, 5 ( 7 ), e11440. https://doi.org/10.1371/journal.pone.0011440
dc.identifier.citedreferenceBloom, P. A., VanTieghem, M., Gabard‐Durnam, L., Gee, D. G., Flannery, J., Caldera, C., Goff, B., Telzer, E. H., Humphreys, K. L., Fareri, D. S., Shapiro, M., Algharazi, S., Bolger, N., Aly, M. & Tottenham, N. ( 2021 ). Age‐related change in task‐evoked amygdala‐prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4‐22 years. BioRxiv. https://doi.org/10.1101/2021.10.08.463601
dc.identifier.citedreferenceBotvinik‐Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, A., Avesani, P., Baczkowski, B., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. ( 2020 ). Variability in the analysis of a single neuroimaging dataset by many teams. BioRxiv, 582 ( 7810 ), 84 – 88. https://doi.org/10.1038/s41586‐020‐2314‐9
dc.identifier.citedreferenceErnst, M., & Spear, L. P. ( 2009 ). Reward systems. In Handbook of developmental social neuroscience (pp. 324 – 341 ). New York, NY: The Guilford Press.
dc.identifier.citedreferenceBryce, N. V., Flournoy, J. C., Guassi Moreira, J. F., Rosen, M. L., Sambook, K. A., Mair, P., & McLaughlin, K. A. ( 2021 ). Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting‐state functional connectivity. NeuroImage, 243, 118487. https://doi.org/10.1016/j.neuroimage.2021.118487
dc.identifier.citedreferenceButton, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. ( 2013 ). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14 ( 5 ), 365 – 376. https://doi.org/10.1038/nrn3475
dc.identifier.citedreferenceCasey, B. J. ( 2015 ). Beyond simple models of self‐control to circuit‐based accounts of adolescent behavior. Annual Review of Psychology, 66, 295 – 319. https://doi.org/10.1146/annurev‐psych‐010814‐015156
dc.identifier.citedreferenceCasey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … Dale, A. M. ( 2018 ). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43 – 54. https://doi.org/10.1016/j.dcn.2018.03.001
dc.identifier.citedreferenceCasey, B. J., Getz, S., & Galvan, A. ( 2008 ). The adolescent brain. Developmental Review, 28 ( 1 ), 62 – 77. https://doi.org/10.1016/j.dr.2007.08.003
dc.identifier.citedreferenceCasey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. ( 2019 ). Development of the emotional brain. Neuroscience Letters, 693, 29 – 34. https://doi.org/10.1016/j.neulet.2017.11.055
dc.identifier.citedreferenceChase, H. W., Fournier, J. C., Bertocci, M. A., Greenberg, T., Aslam, H., Stiffler, R., Lockovich, J., Graur, S., Bebko, G., Forbes, E. E., & Phillips, M. L. ( 2017 ). A pathway linking reward circuitry, impulsive sensation‐seeking and risky decision‐making in young adults: Identifying neural markers for new interventions. Translational Psychiatry, 7 ( 4 ), e1096. https://doi.org/10.1038/tp.2017.60
dc.identifier.citedreferenceCrane, N. A., Gorka, S. M., Phan, K. L., & Childs, E. ( 2018 ). Amygdala‐orbitofrontal functional connectivity mediates the relationship between sensation seeking and alcohol use among binge‐drinking adults. Drug and Alcohol Dependence, 192, 208 – 214. https://doi.org/10.1016/j.drugalcdep.2018.07.044
dc.identifier.citedreferenceDemidenko, M. I., Huntley, E. D., Jahn, A., Thomason, M. E., Monk, C. S., & Keating, D. P. ( 2020 ). Cortical and subcortical response to the anticipation of reward in high and average/low risk‐taking adolescents. Developmental Cognitive Neuroscience, 44, 100798. https://doi.org/10.1016/j.dcn.2020.100798
dc.identifier.citedreferenceDemidenko, M. I., Huntley, E. D., Martz, M. E., & Keating, D. P. ( 2019 ). Adolescent health risk behaviors: Convergent, discriminant and predictive validity of self‐report and cognitive measures. Journal of Youth and Adolescence, 48 ( 9 ), 1765 – 1783. https://doi.org/10.1007/s10964‐019‐01057‐4
dc.identifier.citedreferenceDemidenko, M. I., Weigard, A. S., Ganesan, K., Jang, H., Jahn, A., Huntley, E. D., & Keating, D. P. ( 2021 ). Interactions between methodological and interindividual variability: How Monetary Incentive Delay (MID) task contrast maps vary and impact associations with behavior. Brain and Behavior, 11 ( 5 ), e02093. https://doi.org/10.1002/brb3.2093
dc.identifier.citedreferenceDi, X., & Biswal, B. B. ( 2017 ). Psychophysiological interactions in a visual checkerboard task: Reproducibility, reliability, and the effects of deconvolution. Frontiers in Neuroscience, 11, 573. https://doi.org/10.3389/fnins.2017.00573
dc.identifier.citedreferenceDuffy, K. A., Fisher, Z. F., Arizmendi, C. A., Molenaar, P. C. M., Hopfinger, J., Cohen, J. R., Beltz, A. M., Lindquist, M. A., Hallquist, M. N., & Gates, K. M. ( 2021 ). Detecting task‐dependent functional connectivity in group iterative multiple model estimation with person‐specific hemodynamic response functions. Brain Connectivity, 11 ( 6 ), 418 – 429. https://doi.org/10.1089/brain.2020.0864
dc.identifier.citedreferenceDugré, J. R., Dumais, A., Bitar, N., & Potvin, S. ( 2018 ). Loss anticipation and outcome during the monetary incentive delay task: A neuroimaging systematic review and meta‐analysis. PeerJ, 6, e4749. https://doi.org/10.7717/peerj.4749
dc.identifier.citedreferenceEkhtiari, H., Kuplicki, R., Aupperle, R. P., & Paulus, M. P. ( 2020 ). It is never as good the second time around: Brain areas involved in salience processing habituate during repeated drug cue exposure in methamphetamine and opioid users. BioRxiv. https://doi.org/10.1101/2020.04.18.036368
dc.identifier.citedreferenceElliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D., Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T. E., & Hariri, A. R. ( 2019 ). General functional connectivity: Shared features of resting‐state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage, 189, 516 – 532. https://doi.org/10.1016/j.neuroimage.2019.01.068
dc.identifier.citedreferenceElliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., Sison, M. L., Moffitt, T. E., Caspi, A., & Hariri, A. R. ( 2020 ). What is the test‐retest reliability of common task‐functional MRI measures? New empirical evidence and a meta‐analysis. Psychological Science, 31 ( 7 ), 792 – 806. https://doi.org/10.1177/0956797620916786
dc.identifier.citedreferenceErnst, M. ( 2014 ). The triadic model perspective for the study of adolescent motivated behavior. Brain and Cognition, 89, 104 – 111. https://doi.org/10.1016/j.bandc.2014.01.006
dc.identifier.citedreferenceErnst, M., Pine, D. S., & Hardin, M. ( 2006 ). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36 ( 3 ), 299 – 312. https://doi.org/10.1017/S0033291705005891
dc.identifier.citedreferenceFailing, M., & Theeuwes, J. ( 2018 ). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25 ( 2 ), 514 – 538. https://doi.org/10.3758/s13423‐017‐1380‐y
dc.identifier.citedreferenceFinn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. ( 2017 ). Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage, 160, 140 – 151. https://doi.org/10.1016/j.neuroimage.2017.03.064
dc.identifier.citedreferenceFong, A. H. C., Yoo, K., Rosenberg, M. D., Zhang, S., Li, C.‐S. R., Scheinost, D., Constable, R. T., & Chun, M. M. ( 2019 ). Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. NeuroImage, 188, 14 – 25. https://doi.org/10.1016/j.neuroimage.2018.11.057
dc.identifier.citedreferenceFriston, K., Moran, R., & Seth, A. K. ( 2013 ). Analysing connectivity with Granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23 ( 2 ), 172 – 178. https://doi.org/10.1016/j.conb.2012.11.010
dc.identifier.citedreferenceGalvan, A. ( 2010 ). Adolescent development of the reward system. Frontiers in Human Neuroscience, 4, 6. https://doi.org/10.3389/neuro.09.006.2010
dc.identifier.citedreferenceGalvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. J. ( 2007 ). Risk‐taking and the adolescent brain: Who is at risk? Developmental Science, 10 ( 2 ), F8 – F14. https://doi.org/10.1111/j.1467‐7687.2006.00579.x
dc.identifier.citedreferenceGalván, A., & McGlennen, K. M. ( 2012 ). Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults. Journal of Cognitive Neuroscience, 25 ( 2 ), 284 – 296. https://doi.org/10.1162/jocn_a_00326
dc.identifier.citedreferenceGates, K. M., Henry, T., Steinley, D., & Fair, D. A. ( 2016 ). A Monte Carlo evaluation of weighted community detection algorithms. Frontiers in Neuroinformatics, 10, 45. https://doi.org/10.3389/fninf.2016.00045
dc.identifier.citedreferenceGates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. ( 2017 ). Unsupervised classification during time‐series model building. Multivariate Behavioral Research, 52 ( 2 ), 129 – 148. https://doi.org/10.1080/00273171.2016.1256187
dc.identifier.citedreferenceGates, K. M., & Molenaar, P. C. M. ( 2012 ). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63 ( 1 ), 310 – 319. https://doi.org/10.1016/j.neuroimage.2012.06.026
dc.identifier.citedreferenceGates, K. M., Molenaar, P. C. M., Hillary, F. G., & Slobounov, S. ( 2011 ). Extended unified SEM approach for modeling event‐related fMRI data. NeuroImage, 54 ( 2 ), 1151 – 1158. https://doi.org/10.1016/j.neuroimage.2010.08.051
dc.identifier.citedreferenceGlover, G. H., Li, T. Q., & Ress, D. ( 2000 ). Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44 ( 1 ), 162 – 167. https://doi.org/10.1002/1522‐2594(200007)44:1<162:aid‐mrm23>3.0.co;2‐e
dc.identifier.citedreferenceGoetschius, L. G., Hein, T. C., McLanahan, S. S., Brooks‐Gunn, J., McLoyd, V. C., Dotterer, H. L., Lopez‐Duran, N., Mitchell, C., Hyde, L. W., Monk, C. S., & Beltz, A. M. ( 2020 ). Association of childhood violence exposure with adolescent neural network density. JAMA Network Open, 3 ( 9 ), e2017850. https://doi.org/10.1001/jamanetworkopen.2020.17850
dc.identifier.citedreferenceGordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., Ortega, M., Hoyt‐Drazen, C., Gratton, C., Sun, H., Hampton, J. M., Coalson, R. S., Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E., Nelson, S. M., & Dosenbach, N. U. F. ( 2017 ). Precision functional mapping of individual human brains. Neuron, 95 ( 4 ), 791 – 807.e7. https://doi.org/10.1016/j.neuron.2017.07.011
dc.identifier.citedreferenceGreene, A. S., Gao, S., Scheinost, D., & Constable, R. T. ( 2018 ). Task‐induced brain state manipulation improves prediction of individual traits. Nature Communications, 9 ( 1 ), 1 – 13. https://doi.org/10.1038/s41467‐018‐04920‐3
dc.identifier.citedreferenceHaber, S. N., & Behrens, T. E. J. ( 2014 ). The neural network underlying incentive‐based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron, 83 ( 5 ), 1019 – 1039. https://doi.org/10.1016/j.neuron.2014.08.031
dc.identifier.citedreferenceHaber, S. N., & Knutson, B. ( 2010 ). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35 ( 1 ), 4 – 26. https://doi.org/10.1038/npp.2009.129
dc.identifier.citedreferenceHarden, K. P., & Tucker‐Drob, E. M. ( 2011 ). Individual differences in the development of sensation seeking and impulsivity during adolescence: Further evidence for a dual systems model. Developmental Psychology, 47 ( 3 ), 739 – 746. https://doi.org/10.1037/a0023279
dc.identifier.citedreferenceHenry, T. R., Feczko, E., Cordova, M., Earl, E., Williams, S., Nigg, J. T., Fair, D. A., & Gates, K. M. ( 2019 ). Comparing directed functional connectivity between groups with confirmatory subgrouping GIMME. NeuroImage, 188, 642 – 653. https://doi.org/10.1016/j.neuroimage.2018.12.040
dc.identifier.citedreferenceHillary, F. G., Medaglia, J. D., Gates, K. M., Molenaar, P. C., & Good, D. C. ( 2014 ). Examining network dynamics after traumatic brain injury using the extended unified SEM approach. Brain Imaging and Behavior, 8 ( 3 ), 435 – 445. https://doi.org/10.1007/s11682‐012‐9205‐0
dc.identifier.citedreferenceHorvath, P., & Zuckerman, M. ( 1993 ). Sensation seeking, risk appraisal, and risky behavior. Personality and Individual Differences, 14 ( 1 ), 41 – 52. https://doi.org/10.1016/0191‐8869(93)90173‐Z
dc.identifier.citedreferenceHoyle, R. H., Stephenson, M. T., Palmgreen, P., Lorch, E. P., & Donohew, R. L. ( 2002 ). Reliability and validity of a brief measure of sensation seeking. Personality and Individual Differences, 32 ( 3 ), 401 – 414. https://doi.org/10.1016/S0191‐8869(01)00032‐0
dc.identifier.citedreferenceJenkinson, M., Bannister, P., Brady, M., & Smith, S. ( 2002 ). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17 ( 2 ), 825 – 841. https://doi.org/10.1006/nimg.2002.1132
dc.identifier.citedreferenceJenkinson, M., & Smith, S. ( 2001 ). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5 ( 2 ), 143 – 156. https://doi.org/10.1016/S1361‐8415(01)00036‐6
dc.identifier.citedreferenceKann, L., McManus, T., Harris, W. A., Shanklin, S. L., Flint, K. H., Queen, B., Lowry, R., Chyen, D., Whittle, L., Thornton, J., Lim, C., Bradford, D., Yamakawa, Y., Leon, M., Brener, N., & Ethier, K. A. ( 2018 ). Youth risk behavior surveillance—United States, 2017. MMWR. Surveillance Summaries, 67 ( 8 ), 1 – 114. https://doi.org/10.15585/mmwr.ss6708a1
dc.identifier.citedreferenceKhurana, A., Romer, D., Betancourt, L. M., & Hurt, H. ( 2018 ). Modeling trajectories of sensation seeking and impulsivity dimensions from early to late adolescence: Universal trends or distinct sub‐groups? Journal of Youth and Adolescence, 47 ( 9 ), 1992 – 2005. https://doi.org/10.1007/s10964‐018‐0891‐9
dc.identifier.citedreferenceKnutson, B., & Greer, S. ( 2008 ). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 363 ( 1511 ), 3771 – 3786. https://doi.org/10.1098/rstb.2008.0155
dc.identifier.citedreferenceKnutson, B., Katovich, K., & Suri, G. ( 2014 ). Inferring affect from fMRI data. Trends in Cognitive Sciences, 18 ( 8 ), 422 – 428. https://doi.org/10.1016/j.tics.2014.04.006
dc.identifier.citedreferenceKnutson, B., Westdorp, A., Kaiser, E., & Hommer, D. ( 2000 ). fMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12 ( 1 ), 20 – 27. https://doi.org/10.1006/nimg.2000.0593
dc.identifier.citedreferenceLane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. C. ( 2019 ). Uncovering general, shared, and unique temporal patterns in ambulatory assessment data. Psychological Methods, 24 ( 1 ), 54 – 69. https://doi.org/10.1037/met0000192
dc.identifier.citedreferenceLi, X., Ai, L., Giavasis, S., Jin, H., Feczko, E., Xu, T., Clucas, J., Franco, A., Heinsfeld, A. S., Adebimpe, A., Vogelstein, J. T., Yan, C.‐G., Esteban, O., Poldrack, R. A., Craddock, C., Fair, D., Satterthwaite, T., Kiar, G. & Milham, M. P. ( 2021 ). Moving beyond processing and analysis‐related variation in neuroscience. BioRxiv. https://doi.org/10.1101/2021.12.01.470790
dc.identifier.citedreferenceLinden‐Carmichael, A. N., Stamates, A. L., & Lau‐Barraco, C. ( 2019 ). Simultaneous use of alcohol and marijuana: Patterns and individual differences. Substance Use & Misuse, 54 ( 13 ), 2156 – 2166. https://doi.org/10.1080/10826084.2019.1638407
dc.identifier.citedreferenceLydon‐Staley, D. M., & Bassett, D. S. ( 2018 ). The promise and challenges of intensive longitudinal designs for imbalance models of adolescent substance use. Frontiers in Psychology, 9, 1576. https://doi.org/10.3389/fpsyg.2018.01576
dc.identifier.citedreferenceMarek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. ( 2015 ). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13 ( 12 ), e1002328. https://doi.org/10.1371/journal.pbio.1002328
dc.identifier.citedreferenceMcLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. ( 2012 ). A generalized form of context‐dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage, 61 ( 4 ), 1277 – 1286. https://doi.org/10.1016/j.neuroimage.2012.03.068
dc.identifier.citedreferenceMeisel, S. N., Fosco, W. D., Hawk, L. W., & Colder, C. R. ( 2019 ). Mind the gap: A review and recommendations for statistically evaluating dual systems models of adolescent risk behavior. Developmental Cognitive Neuroscience, 39, 100681. https://doi.org/10.1016/j.dcn.2019.100681
dc.identifier.citedreferenceMichaelsen, M. M., & Esch, T. ( 2021 ). Motivation and reward mechanisms in health behavior change processes. Brain Research, 1757, 147309. https://doi.org/10.1016/j.brainres.2021.147309
dc.identifier.citedreferenceMumford, J. A., & Ramsey, J. D. ( 2014 ). Bayesian networks for fMRI: A primer. NeuroImage, 86, 573 – 582. https://doi.org/10.1016/j.neuroimage.2013.10.020
dc.identifier.citedreferenceMunn, B. R., Müller, E. J., Wainstein, G., & Shine, J. M. ( 2021 ). The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nature Communications, 12 ( 1 ), 6016. https://doi.org/10.1038/s41467‐021‐26268‐x
dc.identifier.citedreferenceMurray, L., Lopez‐Duran, N. L., Mitchell, C., Monk, C. S., & Hyde, L. W. ( 2020 ). Neural mechanisms of reward and loss processing in a low‐income sample of at‐risk adolescents. Social Cognitive and Affective Neuroscience, 15 ( 12 ), 1299 – 1314. https://doi.org/10.1093/scan/nsaa157
dc.identifier.citedreferenceNoble, S., Scheinost, D., & Constable, R. T. ( 2019 ). A decade of test‐retest reliability of functional connectivity: A systematic review and meta‐analysis. NeuroImage, 203, 116157. https://doi.org/10.1016/j.neuroimage.2019.116157
dc.identifier.citedreferenceOldham, S., & Fornito, A. ( 2019 ). The development of brain network hubs. Developmental Cognitive Neuroscience, 36, 100607. https://doi.org/10.1016/j.dcn.2018.12.005
dc.identifier.citedreferenceOldham, S., Murawski, C., Fornito, A., Youssef, G., Yücel, M., & Lorenzetti, V. ( 2018 ). The anticipation and outcome phases of reward and loss processing: A neuroimaging meta‐analysis of the monetary incentive delay task. Human Brain Mapping, 39 ( 8 ), 3398 – 3418. https://doi.org/10.1002/hbm.24184
dc.identifier.citedreferenceOrman, G. K., & Labatut, V. ( 2009 ). A comparison of community detection algorithms on artificial networks. In J. Gama, V. S. Costa, A. M. Jorge, & P. B. Brazdil (Eds.), Discovery science (pp. 242 – 256 ). Springer. https://doi.org/10.1007/978‐3‐642‐04747‐3_20
dc.identifier.citedreferencePadoa‐Schioppa, C., & Conen, K. E. ( 2017 ). Orbitofrontal cortex: A neural circuit for economic decisions. Neuron, 96 ( 4 ), 736 – 754. https://doi.org/10.1016/j.neuron.2017.09.031
dc.identifier.citedreferencePark, H. R. P., Kostandyan, M., Boehler, C. N., & Krebs, R. M. ( 2018 ). Smiling faces and cash bonuses: Exploring common affective coding across positive and negative emotional and motivational stimuli using fMRI. Cognitive, Affective, & Behavioral Neuroscience, 18 ( 3 ), 550 – 563. https://doi.org/10.3758/s13415‐018‐0587‐3
dc.identifier.citedreferenceParkes, L., Fulcher, B., Yücel, M., & Fornito, A. ( 2018 ). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting‐state functional MRI. NeuroImage, 171, 415 – 436. https://doi.org/10.1016/j.neuroimage.2017.12.073
dc.identifier.citedreferencePessoa, L. ( 2021 ). Complex systems: The science of interacting parts. OSF Preprints. https://doi.org/10.31219/osf.io/635tq
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.