Show simple item record

Discussion of Research Priorities for Gait Disorders in Parkinson’s Disease

dc.contributor.authorBohnen, Nicolaas I.
dc.contributor.authorCosta, Rui M.
dc.contributor.authorDauer, William T.
dc.contributor.authorFactor, Stewart A.
dc.contributor.authorGiladi, Nir
dc.contributor.authorHallett, Mark
dc.contributor.authorLewis, Simon J.G.
dc.contributor.authorNieuwboer, Alice
dc.contributor.authorNutt, John G.
dc.contributor.authorTakakusaki, Kaoru
dc.contributor.authorKang, Un Jung
dc.contributor.authorPrzedborski, Serge
dc.contributor.authorPapa, Stella M.
dc.date.accessioned2022-03-07T03:12:49Z
dc.date.available2023-03-06 22:12:48en
dc.date.available2022-03-07T03:12:49Z
dc.date.issued2022-02
dc.identifier.citationBohnen, Nicolaas I.; Costa, Rui M.; Dauer, William T.; Factor, Stewart A.; Giladi, Nir; Hallett, Mark; Lewis, Simon J.G.; Nieuwboer, Alice; Nutt, John G.; Takakusaki, Kaoru; Kang, Un Jung; Przedborski, Serge; Papa, Stella M. (2022). "Discussion of Research Priorities for Gait Disorders in Parkinson’s Disease." Movement Disorders 37(2): 253-263.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/171864
dc.description.abstractGait and balance abnormalities develop commonly in Parkinson’s disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherresearch priorities
dc.subject.otherParkinson’s disease
dc.subject.othergait
dc.subject.otherFOG
dc.subject.otherfreezing
dc.subject.otherbalance
dc.titleDiscussion of Research Priorities for Gait Disorders in Parkinson’s Disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171864/1/mds28883_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171864/2/mds28883.pdf
dc.identifier.doi10.1002/mds.28883
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceEhgoetz Martens KA, Hall JM, Georgiades MJ, et al. The functional network signature of heterogeneity in freezing of gait. Brain 2018; 141 ( 4 ): 1145 – 1160.
dc.identifier.citedreferenceTakakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2016; 123 ( 7 ): 695 – 729.
dc.identifier.citedreferenceGong X, Mendoza‐Halliday D, Ting JT, et al. An ultra‐sensitive step‐function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 2020; 107 ( 1 ): 38 – 51.e38
dc.identifier.citedreferenceBeyene AG, Delevich K, Del Bonis‐O’Donnell JT, et al. Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci Adv 2019; 5 ( 7 ): eaaw3108
dc.identifier.citedreferenceKim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017; 18 ( 4 ): 222 – 235.
dc.identifier.citedreferenceYoung JW, Minassian A, Paulus MP, Geyer MA, Perry W. A reverse‐translational approach to bipolar disorder: rodent and human studies in the behavioral pattern monitor. Neurosci Biobehav Rev 2007; 31 ( 6 ): 882 – 896.
dc.identifier.citedreferenceBrackman DJ, Giacomini KM. Reverse translational research of ABCG2 (BCRP) in human disease and drug response. Clin Pharmacol Ther 2018; 103 ( 2 ): 233 – 242.
dc.identifier.citedreferenceShakhnovich V. It’s time to reverse our thinking: the reverse translation research paradigm. Clin Transl Sci 2018; 11 ( 2 ): 98 – 99.
dc.identifier.citedreferenceAkil H, Gordon J, Hen R, et al. Treatment resistant depression: a multi‐scale, systems biology approach. Neurosci Biobehav Rev 2018; 84: 272 – 288.
dc.identifier.citedreferenceSpetsieris P, Ma Y, Peng S, et al. Identification of disease‐related spatial covariance patterns using neuroimaging data. J Vis Exp 2013; 76: 50319. doi: 10.3791/50319.
dc.identifier.citedreferenceWu T, Hallett M, Chan P. Motor automaticity in Parkinson’s disease. Neurobiol Dis 2015; 82: 226 – 234.
dc.identifier.citedreferenceWu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson’s disease. Neuroimage 2010; 49 ( 3 ): 2581 – 2587.
dc.identifier.citedreferenceWu T, Hallett M. Neural correlates of dual task performance in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2008; 79 ( 7 ): 760 – 766.
dc.identifier.citedreferenceSarter M, Avila C, Kucinski A, Donovan E. Make a left turn: cortico‐striatal circuitry mediating the attentional control of complex movements. Mov Disord 2021; 36 ( 3 ): 535 – 546.
dc.identifier.citedreferenceCui G, Jun SB, Jin X, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013; 494 ( 7436 ): 238 – 242.
dc.identifier.citedreferenceMeng C, Zhou J, Papaneri A, Peddada T, Xu K, Cui G. Spectrally resolved fiber photometry for multi‐component analysis of brain circuits. Neuron 2018; 98 ( 4 ): 707 – 717.e704.
dc.identifier.citedreferenceCowie D, Limousin P, Peters A, Hariz M, Day BL. Doorway‐provoked freezing of gait in Parkinson’s disease. Mov Disord 2012; 27 ( 4 ): 492 – 499.
dc.identifier.citedreferenceCowie D, Limousin P, Peters A, Day BL. Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia 2010; 48 ( 9 ): 2750 – 2757.
dc.identifier.citedreferenceSuzuki M, Takahashi H, Yoshida S, Kawaguchi K, Harada Y. Recovery mechanism of postural disturbance after vestibular neurectomy. ORL J Otorhinolaryngol Relat Spec 1991; 53 ( 5 ): 290 – 293.
dc.identifier.citedreferenceNakamura KC, Sharott A, Magill PJ. Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia‐recipient and cerebellar‐recipient zones of the motor thalamus. Cereb Cortex 2014; 24 ( 1 ): 81 – 97.
dc.identifier.citedreferenceRevuelta GJ, Uthayathas S, Wahlquist AE, Factor SA, Papa SM. Non‐human primate FOG develops with advanced parkinsonism induced by MPTP treatment. Exp Neurol 2012; 237 ( 2 ): 464 – 469.
dc.identifier.citedreferencela Fougere C, Zwergal A, Rominger A, et al. Real versus imagined locomotion: a [18F]‐FDG PET‐fMRI comparison. Neuroimage 2010; 50 ( 4 ): 1589 – 1598.
dc.identifier.citedreferenceDuncan R. SPECT in focal epilepsies. Behav Neurol 2000; 12 ( 1–2 ): 69 – 75.
dc.identifier.citedreferenceNeirinckx RD, Canning LR, Piper IM, et al. Technetium‐99m d,l‐HM‐PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28 ( 2 ): 191 – 202.
dc.identifier.citedreferenceBologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020; 143 ( 3 ): 727 – 750.
dc.identifier.citedreferenceVercruysse S, Spildooren J, Heremans E, et al. The neural correlates of upper limb motor blocks in Parkinson’s disease and their relation to freezing of gait. Cereb Cortex 2014; 24 ( 12 ): 3154 – 3166.
dc.identifier.citedreferenceKline JE, Huang HJ, Snyder KL, Ferris DP. Isolating gait‐related movement artifacts in electroencephalography during human walking. J Neural Eng 2015; 12 ( 4 ): 046022
dc.identifier.citedreferenceArad E, Bartsch RP, Kantelhardt JW, Plotnik M. Performance‐based approach for movement artifact removal from electroencephalographic data recorded during locomotion. PLoS One 2018; 13 ( 5 ): e0197153
dc.identifier.citedreferenceAsher EE, Plotnik M, Gunther M, et al. Connectivity of EEG synchronization networks increases for Parkinson’s disease patients with freezing of gait. Commun Biol 2021; 4 ( 1 ): 1017
dc.identifier.citedreferenceFu H, Chen Z, Josephson L, Li Z, Liang SH. Positron emission tomography (PET) ligand development for ionotropic glutamate receptors: challenges and opportunities for radiotracer targeting N‐methyl‐d‐aspartate (NMDA), α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA), and kainate receptors. J Med Chem 2019; 62 ( 2 ): 403 – 419.
dc.identifier.citedreferenceHallett M, Di Iorio R, Rossini PM, et al. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128 ( 11 ): 2125 – 2139.
dc.identifier.citedreferenceHallett M, de Haan W, Deco G, et al. Human brain connectivity: clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131 ( 7 ): 1621 – 1651.
dc.identifier.citedreferenceLewis SJ, Factor SA, Giladi N, et al. Addressing the challenges of clinical research for freezing of gait in Parkinson’s disease. Mov Disord 2022; 37: 264 – 267.
dc.identifier.citedreferenceFasano A, Daniele A, Albanese A. Treatment of motor and non‐motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 2012; 11 ( 5 ): 429 – 442.
dc.identifier.citedreferenceVercruysse S, Vandenberghe W, Münks L, Nuttin B, Devos H, Nieuwboer A. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: a prospective controlled study. J Neurol Neurosurg Psychiatry 2014; 85 ( 8 ): 871 – 877.
dc.identifier.citedreferenceSchlenstedt C, Shalash A, Muthuraman M, Falk D, Witt K, Deuschl G. Effect of high‐frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson’s disease: a systematic review and meta‐analysis. Eur J Neurol 2017; 24 ( 1 ): 18 – 26.
dc.identifier.citedreferenceBloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 2004; 19 ( 8 ): 871 – 884.
dc.identifier.citedreferenceFasano A, Herman T, Tessitore A, Strafella AP, Bohnen NI. Neuroimaging of freezing of gait. J Parkinsons Dis 2015; 5 ( 2 ): 241 – 254.
dc.identifier.citedreferenceBohnen NI, Jahn K. Imaging: what can it tell us about parkinsonian gait? Mov Disord 2013; 28 ( 11 ): 1492 – 1500.
dc.identifier.citedreferenceMancini M, Bloem BR, Horak FB, Lewis SJG, Nieuwboer A, Nonnekes J. Clinical and methodological challenges for assessing freezing of gait: future perspectives. Mov Disord 2019; 34 ( 6 ): 783 – 790.
dc.identifier.citedreferenceNieuwboer A, Giladi N. Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov Disord 2013; 28 ( 11 ): 1509 – 1519.
dc.identifier.citedreferenceNutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011; 10 ( 8 ): 734 – 744.
dc.identifier.citedreferenceGiladi N, Horak FB, Hausdorff JM. Classification of gait disturbances: distinguishing between continuous and episodic changes. Mov Disord 2013; 28 ( 11 ): 1469 – 1473.
dc.identifier.citedreferenceSchoneburg B, Mancini M, Horak F, Nutt JG. Framework for understanding balance dysfunction in Parkinson’s disease. Mov Disord 2013; 28 ( 11 ): 1474 – 1482.
dc.identifier.citedreferenceHallett M. The intrinsic and extrinsic aspects of freezing of gait. Mov Disord 2008; 23 ( Suppl 2 ): S439 – S443.
dc.identifier.citedreferenceWeiss D, Schoellmann A, Fox MD, et al. Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 2020; 143 ( 1 ): 14 – 30.
dc.identifier.citedreferenceTakakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 2013; 28 ( 11 ): 1483 – 1491.
dc.identifier.citedreferenceTakakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord 2017; 10 ( 1 ): 1 – 17.
dc.identifier.citedreferenceSnijders AH, Takakusaki K, Debu B, et al. Physiology of freezing of gait. Ann Neurol 2016; 80 ( 5 ): 644 – 659.
dc.identifier.citedreferenceGrillner S, El Manira A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol Rev 2020; 100 ( 1 ): 271 – 320.
dc.identifier.citedreferenceFerreira‐Pinto MJ, Kanodia H, Falasconi A, Sigrist M, Esposito MS, Arber S. Functional diversity for body actions in the mesencephalic locomotor region. Cell 2021; 184 ( 17 ): 4564 – 4578. e4518
dc.identifier.citedreferenceCaggiano V, Leiras R, Goni‐Erro H, et al. Midbrain circuits that set locomotor speed and gait selection. Nature 2018; 553 ( 7689 ): 455 – 460.
dc.identifier.citedreferenceCapelli P, Pivetta C, Soledad Esposito M, Arber S. Locomotor speed control circuits in the caudal brainstem. Nature 2017; 551 ( 7680 ): 373 – 377.
dc.identifier.citedreferenceRoseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC. Cell‐type‐specific control of brainstem locomotor circuits by basal ganglia. Cell 2016; 164 ( 3 ): 526 – 537.
dc.identifier.citedreferenceJosset N, Roussel M, Lemieux M, Lafrance‐Zoubga D, Rastqar A, Bretzner F. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr Biol 2018; 28 ( 6 ): 884 – 901 e883.
dc.identifier.citedreferenceDautan D, Kovacs A, Bayasgalan T, Diaz‐Acevedo MA, Pal B, Mena‐Segovia J. Modulation of motor behavior by the mesencephalic locomotor region. Cell Rep 2021; 36 ( 8 ): 109594
dc.identifier.citedreferenceThevathasan W, Moro E. What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson’s disease? Neurobiol Dis 2019; 128: 67 – 74.
dc.identifier.citedreferenceAlbin RL, Surmeier DJ, Tubert C, et al. Targeting the pedunculopontine nucleus in Parkinson’s disease: time to go back to the drawing board. Mov Disord 2018; 33 ( 12 ): 1871 – 1875.
dc.identifier.citedreferenceMacKinnon CD. Sensorimotor anatomy of gait, balance, and falls. Handb Clin Neurol 2018; 159: 3 – 26.
dc.identifier.citedreferenceGaltieri DJ, Estep CM, Wokosin DL, Traynelis S, Surmeier DJ. Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. Elife 2017; 6: e30352. doi: 10.7554/eLife.30352
dc.identifier.citedreferenceFutami T, Takakusaki K, Kitai ST. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 1995; 21 ( 4 ): 331 – 342.
dc.identifier.citedreferenceTakakusaki K, Shiroyama T, Yamamoto T, Kitai ST. Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 1996; 371 ( 3 ): 345 – 361.
dc.identifier.citedreferenceMena‐Segovia J, Bolam JP. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 2017; 94 ( 1 ): 7 – 18.
dc.identifier.citedreferenceGarcia‐Rill E, Saper CB, Rye DB, et al. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019; 130 ( 6 ): 925 – 940.
dc.identifier.citedreferenceHirsch EC, Graybiel AM, Duyckaerts C, Javoy‐Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 1987; 84 ( 16 ): 5976 – 5980.
dc.identifier.citedreferenceKarachi C, Grabli D, Bernard FA, et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 2010; 120 ( 8 ): 2745 – 2754.
dc.identifier.citedreferenceGrabli D, Karachi C, Folgoas E, et al. Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 2013; 33 ( 29 ): 11986 – 11993.
dc.identifier.citedreferenceFerraye MU, Debu B, Pollak P. Deep brain stimulation effect on freezing of gait. Mov Disord 2008; 23 ( Suppl 2 ): S489 – S494.
dc.identifier.citedreferenceHuang C, Chu H, Zhang Y, Wang X. Deep brain stimulation to alleviate freezing of gait and cognitive dysfunction in Parkinson’s disease: update on current research and future perspectives. Front Neurosci 2018; 12: 29
dc.identifier.citedreferenceBarbe MT, Tonder L, Krack P, et al. Deep brain stimulation for freezing of gait in Parkinson’s disease with early motor complications. Mov Disord 2020; 35 ( 1 ): 82 – 90.
dc.identifier.citedreferenceLucas McKay J, Goldstein FC, Sommerfeld B, Bernhard D, Perez Parra S, Factor SA. Freezing of gait can persist after an acute levodopa challenge in Parkinson’s disease. NPJ Parkinsons Dis 2019; 5: 25
dc.identifier.citedreferenceKing LA, St George RJ, Carlson‐Kuhta P, Nutt JG, Horak FB. Preparation for compensatory forward stepping in Parkinson’s disease. Arch Phys Med Rehabil 2010; 91 ( 9 ): 1332 – 1338.
dc.identifier.citedreferenceOkada Y, Fukumoto T, Takatori K, Nagino K, Hiraoka K. Variable initial swing side and prolonged double limb support represent abnormalities of the first three steps of gait initiation in patients with Parkinson’s disease with freezing of gait. Front Neurol 2011; 2: 85
dc.identifier.citedreferencePalmisano C, Brandt G, Vissani M, et al. Gait initiation in Parkinson’s disease: impact of dopamine depletion and initial stance condition. Front Bioeng Biotechnol 2020; 8: 137
dc.identifier.citedreferenceSchlenstedt C, Mancini M, Horak F, Peterson D. Anticipatory postural adjustment during self‐initiated, cued, and compensatory stepping in healthy older adults and patients with Parkinson disease. Arch Phys Med Rehabil 2017; 98 ( 7 ): 1316 – 1324.e1311
dc.identifier.citedreferenceFerraye MU, Debû B, Fraix V, et al. Effects of subthalamic nucleus stimulation and levodopa on freezing of gait in Parkinson disease. Neurology 2008; 70 ( 16 Pt 2 ): 1431 – 1437.
dc.identifier.citedreferenceAvila C, Kucinski A, Sarter M. Complex movement control in a rat model of parkinsonian falls: bidirectional control by striatal cholinergic interneurons. J Neurosci 2020; 40 ( 31 ): 6049 – 6067.
dc.identifier.citedreferenceWilson CJ. Active decorrelation in the basal ganglia. Neuroscience 2013; 250: 467 – 482.
dc.identifier.citedreferenceBohnen NI, Kanel P, Zhou Z, et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol 2019; 85 ( 4 ): 538 – 549.
dc.identifier.citedreferenceJin C, Qi S, Teng Y, et al. Integrating structural and functional interhemispheric brain connectivity of gait freezing in Parkinson’s disease. Front Neurol 2021; 12: 609866
dc.identifier.citedreferenceD’Cruz N, Vervoort G, Chalavi S, Dijkstra BW, Gilat M, Nieuwboer A. Thalamic morphology predicts the onset of freezing of gait in Parkinson’s disease. NPJ Parkinsons Dis 2021; 7 ( 1 ): 20
dc.identifier.citedreferenceGilat M, Dijkstra BW, D’Cruz N, Nieuwboer A, Lewis SJG. Functional MRI to study gait impairment in Parkinson’s disease: a systematic review and exploratory ALE meta‐analysis. Curr Neurol Neurosci Rep 2019; 19 ( 8 ): 49
dc.identifier.citedreferenceBohnen NI, Kanel P, Koeppe RA, et al. Regional cerebral cholinergic nerve terminal integrity and cardinal motor features in Parkinson’s disease. Brain Commun 2021;: May 22;3(2):fcab109. doi: 10.1093/braincomms/fcab109. eCollection 2021.
dc.identifier.citedreferenceAlbin RL, Bohnen NI, Muller M, et al. Regional vesicular acetylcholine transporter distribution in human brain: a [(18) F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526 ( 17 ): 2884 – 2897.
dc.identifier.citedreferenceZhang C, Zhou P, Yuan T. The cholinergic system in the cerebellum: from structure to function. Rev Neurosci 2016; 27 ( 8 ): 769 – 776.
dc.identifier.citedreferencevan der Steen J, Tan HS. Cholinergic control in the floccular cerebellum of the rabbit. Prog Brain Res 1997; 114: 335 – 345.
dc.identifier.citedreferencePrestori F, Bonardi C, Mapelli L, et al. Gating of long‐term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLoS One 2013; 8 ( 5 ): e64828
dc.identifier.citedreferencePotvin‐Desrochers A, Mitchell T, Gisiger T, Paquette C. Changes in resting‐state functional connectivity related to freezing of gait in Parkinson’s disease. Neuroscience 2019; 418: 311 – 317.
dc.identifier.citedreferenceBharti K, Suppa A, Pietracupa S, et al. Abnormal cerebellar connectivity patterns in patients with Parkinson’s disease and freezing of gait. Cerebellum 2019; 18 ( 3 ): 298 – 308.
dc.identifier.citedreferenceWu T, Chan P, Hallett M. Modifications of the interactions in the motor networks when a movement becomes automatic. J Physiol 2008; 586 ( 17 ): 4295 – 4304.
dc.identifier.citedreferenceAmboni M, Barone P, Hausdorff JM. Cognitive contributions to gait and falls: evidence and implications. Mov Disord 2013; 28 ( 11 ): 1520 – 1533.
dc.identifier.citedreferencePeterson DS, Fling BW, Mancini M, Cohen RG, Nutt JG, Horak FB. Dual‐task interference and brain structural connectivity in people with Parkinson’s disease who freeze. J Neurol Neurosurg Psychiatry 2015; 86 ( 7 ): 786 – 792.
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain 2013; 136 ( Pt 4 ): 1204 – 1215.
dc.identifier.citedreferenceEhgoetz Martens KA, Shine JM, Walton CC, et al. Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov Disord 2018; 33 ( 7 ): 1174 – 1178.
dc.identifier.citedreferenceWang EW, Du G, Lewis MM, et al. Multimodal MRI evaluation of parkinsonian limbic pathologies. Neurobiol Aging 2019; 76: 194 – 200.
dc.identifier.citedreferenceGilat M, Ehgoetz Martens KA, Miranda‐Dominguez O, et al. Dysfunctional limbic circuitry underlying freezing of gait in Parkinson’s disease. Neuroscience 2018; 374: 119 – 132.
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One 2013; 8 ( 1 ): e52602
dc.identifier.citedreferenceScholten M, Schoellmann A, Ramos‐Murguialday A, Lopez‐Larraz E, Gharabaghi A, Weiss D. Transitions between repetitive tapping and upper limb freezing show impaired movement‐related beta band modulation. Clin Neurophysiol 2020; 131 ( 10 ): 2499 – 2507.
dc.identifier.citedreferenceBrugger F, Wegener R, Walch J, et al. Altered activation and connectivity of the supplementary motor cortex at motor initiation in Parkinson’s disease patients with freezing. Clin Neurophysiol 2020; 131 ( 9 ): 2171 – 2180.
dc.identifier.citedreferenceDagan M, Herman T, Mirelman A, Giladi N, Hausdorff JM. The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res 2017; 235 ( 8 ): 2463 – 2472.
dc.identifier.citedreferenceNardone R, Versace V, Brigo F, et al. Transcranial magnetic stimulation and gait disturbances in Parkinson’s disease: a systematic review. Neurophysiol Clin 2020; 50 ( 3 ): 213 – 225.
dc.identifier.citedreferenceSarter M, Albin RL, Kucinski A, Lustig C. Where attention falls: increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol 2014; 257: 120 – 129.
dc.identifier.citedreferenceBonora G, Mancini M, Carpinella I, et al. Investigation of anticipatory postural adjustments during one‐leg stance using inertial sensors: evidence from subjects with parkinsonism. Front Neurol 2017; 8: 361
dc.identifier.citedreferenceDanoudis M, Ganesvaran G, Iansek R. Disturbances of automatic gait control mechanisms in higher level gait disorder. Gait Posture 2016; 48: 47 – 51.
dc.identifier.citedreferenceThompson PD. Frontal lobe ataxia. Handb Clin Neurol 2012; 103: 619 – 622.
dc.identifier.citedreferenceHausdorff JM, Doniger GM, Springer S, Yogev G, Simon ES, Giladi N. A common cognitive profile in elderly fallers and in patients with Parkinson’s disease: the prominence of impaired executive function and attention. Exp Aging Res 2006; 32 ( 4 ): 411 – 429.
dc.identifier.citedreferenceSpringer S, Giladi N, Peretz C, Yogev G, Simon ES, Hausdorff JM. Dual‐tasking effects on gait variability: the role of aging, falls, and executive function. Mov Disord 2006; 21 ( 7 ): 950 – 957.
dc.identifier.citedreferenceTakakusaki K, Habaguchi T, Ohtinata‐Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003; 119 ( 1 ): 293 – 308.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.