Show simple item record

COMPASS: A New COnductance Model Based on PFISR And SWARM Satellite Observations

dc.contributor.authorWang, Zihan
dc.contributor.authorZou, Shasha
dc.date.accessioned2022-03-07T03:12:58Z
dc.date.available2023-03-06 22:12:56en
dc.date.available2022-03-07T03:12:58Z
dc.date.issued2022-02
dc.identifier.citationWang, Zihan; Zou, Shasha (2022). "COMPASS: A New COnductance Model Based on PFISR And SWARM Satellite Observations." Space Weather 20(2): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/171868
dc.description.abstractIonospheric conductance plays a crucial and active role in magnetosphere‐ionosphere‐thermosphere coupling processes. Despite its importance, direct global observations of conductance are unavailable. This limitation inspires the development of empirical models that are widely used to specify global distributions of conductance indirectly. In this work, a new model, COnductance Model based on PFISR And SWARM Satellite observations, describing the statistical relationships between conductance and field‐aligned currents (FACs) is presented. The conductance was calculated using the electron densities measured by Poker Flat Incoherent Scattering Radar (PFISR), and the FACs were determined by the magnetic perturbations measured by SWARM at Low‐Earth Orbit. Between 2014 and 2020, there were ∼3,900 conjunction events between PFISR and SWARM, providing a large data set for investigating the relationship between conductance and FACs. It is found that both Hall and Pedersen conductances vary as a power of j∥ $leftvert {j}_{{Vert} }rightvert $, and the power index a depends on magnetic local time and the direction of FACs, ranging from 0.0 to 0.6. Properties of this power index a are founded as follows: (a) the largest power index is obtained on the dawn side, and the minimum is at noon; and (b) the power indices are positive for both upward and downward FACs and are larger for upward FACs than downward FACs. The underlying physical mechanisms of the observed variations of the model parameters are also discussed. Despite the complicated relationship between FACs and conductance, this model provides a convenient way to specify global distributions of the auroral zone conductance.Plain Language SummaryIonospheric conductance is a crucial parameter in the modeling of the geospace response to varying solar wind forcing. However, direct global observations of conductance are unavailable. This limitation inspires the development of this new model, COnductance Model based on PFISR And SWARM Satellite observations, describing the statistical relationships between conductance and field‐aligned currents (FACs). Global distributions of FACs are relatively easy to obtain from either observations or numerical simulations. Thus, this model provides a convenient way to specify the global distribution of the ionospheric conductance.Key PointsIonospheric conductance varies as a power of j∥ $leftvert {j}_{{Vert} }rightvert $ in the ionosphere based on a linear weighted least square fitting methodThe power indices peak on the dawn side and dip at noonUpward field‐aligned currents (FACs) are associated with larger power indices than downward FACs
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetopshere‐ionosphere coupling
dc.subject.otherfield‐aligned currents
dc.subject.otherconductance
dc.titleCOMPASS: A New COnductance Model Based on PFISR And SWARM Satellite Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171868/1/swe21278.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171868/2/swe21278_am.pdf
dc.identifier.doi10.1029/2021SW002958
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., Dezeeuw, D. L., Ridley, A. J., Gombosi, T. I., Ionospheric, D. L. D., et al. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22 ( 2 ), 567 – 584. https://doi.org/10.5194/angeo-22-567-2004
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2010 ). Seasonal variations in diffuse, monoenergetic, and broadband aurora. Journal of Geophysical Research, 115 ( A3 ). https://doi.org/10.1029/2009ja014805
dc.identifier.citedreferencePicone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ), SIA15‐1 – SIA15‐16. https://doi.org/10.1029/2002JA009430
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11 ( 6 ), 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRitter, P., Lühr, H., & Rauberg, J. ( 2013 ). Determining field‐aligned currents with the Swarm constellation mission. Earth Planets and Space, 65 ( 11 ), 1285 – 1294. https://doi.org/10.5047/eps.2013.09.006
dc.identifier.citedreferenceRobinson, R. M., Kaeppler, S. R., Zanetti, L., Anderson, B., Vines, S. K., Korth, H., & Fitzmaurice, A. ( 2020 ). Statistical relations between auroral electrical conductances and field‐aligned currents at high latitudes. Journal of Geophysical Research: Space Physics, 1 – 16. https://doi.org/10.1029/2020ja028008
dc.identifier.citedreferenceRobinson, R. M., & Vondrak, R. R. ( 1984 ). Region ionization and conductivity produced by solar illumination at high latitudes. Journal of Geophysical Research, 89 ( 4 ), 3951. https://doi.org/10.1029/JA089iA06p03951
dc.identifier.citedreferenceRobinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. ( 1987 ). On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92 ( A3 ), 2565. https://doi.org/10.1029/JA092iA03p02565
dc.identifier.citedreferenceRobinson, R. M., Zanetti, L., Anderson, B., Vines, S., & Gjerloev, J. ( 2021 ). Determination of auroral electrodynamic parameters from ampere field‐aligned current measurements. Space Weather, 19 ( 4 ), e2020SW002677. https://doi.org/10.1029/2020SW002677
dc.identifier.citedreferenceRobinson, R. M., & Zanetti, L. J. ( 2021 ). Auroral energy flux and joule heating derived from global maps of field‐aligned currents. Geophysical Research Letters, 48 ( 7 ), e2020GL091527. https://doi.org/10.1029/2020GL091527
dc.identifier.citedreferenceRobinson, R. M., Zhang, Y., Anderson, B. J., Zanetti, L. J., Korth, H., & Fitzmaurice, A. ( 2018 ). Statistical relations between field‐aligned currents and precipitating electron energy flux. Geophysical Research Letters, 45 ( 17 ), 8738 – 8745. https://doi.org/10.1029/2018GL078718
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge University Press.
dc.identifier.citedreferenceShepherd, S. ( 2014 ). Altitude‐Adjusted Corrected Geomagnetic coordinates: Definition and functional approximations. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7501 – 7521. https://doi.org/10.1002/2014ja020264
dc.identifier.citedreferenceSolomon, S. C., Hays, P. B., & Abreu, V. J. ( 1988 ). The auroral 6300 Å emission: Observations and modeling. Journal of Geophysical Research, 93 ( A9 ), 9867 – 9882. https://doi.org/10.1029/ja093ia09p09867
dc.identifier.citedreferenceSpiro, R., Reiff, P. H., & Maher, L., Jr. ( 1982 ). Precipitating electron energy flux and auroral zone conductances – An empirical model. Journal of Geophysical Research, 87 ( A10 ), 8215 – 8227. https://doi.org/10.1029/ja087ia10p08215
dc.identifier.citedreferenceThébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., et al. ( 2015 ). International Geomagnetic Reference Field: The 12th generation. Earth Planets and Space, 67 ( 1 ), 1 – 19. https://doi.org/10.1186/s40623-015-0313-0
dc.identifier.citedreferenceWallis, D. D., & Budzinski, E. E. ( 1981 ). Empirical models of height integrated conductivities. Journal of Geophysical Research, 86, 125 – 137. https://doi.org/10.1029/JA086IA01P00125
dc.identifier.citedreferenceWeygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., et al. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116. https://doi.org/10.1029/2010JA016177
dc.identifier.citedreferenceXiong, C., Stolle, C., Alken, P., & Rauberg, J. ( 2020 ). Relationship between large‐scale ionospheric field‐aligned currents and electron/ion precipitations: DMSP observations. Earth, Planets and Space, 72 ( 1 ), 1 – 22. https://doi.org/10.1186/S40623-020-01286-Z
dc.identifier.citedreferenceZou, S., Lyons, L., Nicolls, M., Heinselman, C., & Mende, S. ( 2009 ). Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 114 ( A12 ). https://doi.org/10.1029/2009ja014259
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Nicolls, M. J., Ridley, A. J., Coster, A. J., Yizengaw, E., et al. ( 2013 ). Electrodynamics of the high‐latitude trough: Its relationship with convection flows and field‐aligned currents. Journal of Geophysical Research: Space Physics, 118 ( 5 ), 2565 – 2572. https://doi.org/10.1002/jgra.50120
dc.identifier.citedreferenceAhn, B.‐H., Richmond, A. D., Kamide, Y., Kroehl, H. W., Emery, B. A., de la Beaujardiére, O., & Akasofu, S.‐I. ( 1998 ). An ionospheric conductance model based on ground magnetic disturbance data. Journal of Geophysical Research, 103 ( A7 ), 14769 – 14780. https://doi.org/10.1029/97JA03088
dc.identifier.citedreferenceAhn, B.‐H., Robinson, R., Kamide, Y., & Akasofu, S.‐I. ( 1983 ). Electric conductivities, electric fields and auroral particle energy injection rate in the auroral ionosphere and their empirical relations to the horizontal magnetic disturbances. Planetary and Space Science, 31 ( 6 ), 641 – 653. https://doi.org/10.1016/0032-0633(83)90005-3
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., & Dyrud, L. P. ( 2014 ). Development of large‐scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophysical Research Letters, 41 ( 9 ), 3017 – 3025. https://doi.org/10.1002/2014GL059941
dc.identifier.citedreferenceCarter, J. A., Milan, S. E., Coxon, J. C., Walach, M. T., & Anderson, B. J. ( 2016 ). Average field‐aligned current configuration parameterized by solar wind conditions. Journal of Geophysical Research: Space Physics, 121, 1294 – 1307. https://doi.org/10.1002/2015JA021567
dc.identifier.citedreferenceCarter, J. A., Milan, S. E., Paxton, L. J., Anderson, B. J., & Gjerloev, J. ( 2020 ). Height‐integrated ionospheric conductances parameterized by interplanetary magnetic field and substorm phase. Journal of Geophysical Research: Space Physics, 125 ( 10 ), e2020JA028121. https://doi.org/10.1029/2020JA028121
dc.identifier.citedreferenceCoumans, V., Gérard, J.‐C., Hubert, B., Meurant, M., & Mende, S. B. ( 2004 ). Global auroral conductance distribution due to electron and proton precipitation from IMAGE‐FUV observations. Annales Geophysicae, 22 ( 5 ), 1595 – 1611. https://doi.org/10.5194/angeo-22-1595-2004
dc.identifier.citedreferenceFang, X., Lummerzheim, D., & Jackman, C. H. ( 2013 ). Proton impact ionization and a fast calculation method. Journal of Geophysical Research: Space Physics, 118 ( 8 ), 5369 – 5378. https://doi.org/10.1002/jgra.50484
dc.identifier.citedreferenceFuller‐Rowell, T., & Evans, D. ( 1987 ). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 – 7618. https://doi.org/10.1029/ja092ia07p07606
dc.identifier.citedreferenceGaland, M., & Richmond, A. D. ( 2001 ). Ionospheric electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research, 106 ( A1 ), 117 – 125. https://doi.org/10.1029/1999JA002001
dc.identifier.citedreferenceGermany, G., Torr, D., Richards, P., Torr, M., & John, S. ( 1994 ). Determination of ionospheric conductivities from FUV auroral emissions. Journal of Geophysical Research, 99 ( A12 ), 23297 – 23305. https://doi.org/10.1029/94ja02038
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research, 117 ( A9 ). https://doi.org/10.1029/2012JA017683
dc.identifier.citedreferenceGrubbs, G., II, Michell, R., Samara, M., Hampton, D., & Jahn, J.‐M. ( 2018 ). Predicting electron population characteristics in 2‐D using multispectral ground‐based imaging. Geophysical Research Letters, 45 ( 1 ), 15 – 20. https://doi.org/10.1002/2017GL075873
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M., Raistrick, R., & McNeil, W. ( 1987 ). Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. Journal of Geophysical Research, 92 ( A11 ), 12275 – 12294. https://doi.org/10.1029/ja092ia11p12275
dc.identifier.citedreferenceHe, M., Vogt, J., Lühr, H., Sorbalo, E., Blagau, A., Le, G., & Lu, G. ( 2012 ). A high‐resolution model of field‐aligned currents through empirical orthogonal functions analysis (MFACE). Geophysical Research Letters, 39 ( 18 ). https://doi.org/10.1029/2012GL053168
dc.identifier.citedreferenceHeinselman, C. J., & Nicolls, M. J. ( 2008 ). A Bayesian approach to electric field and e‐region neutral wind estimation with the poker flat advanced modular incoherent scatter radar. Radio Science, 43 ( 5 ). https://doi.org/10.1029/2007rs003805
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1978 ). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research, 83 ( A2 ), 599 – 615. https://doi.org/10.1029/ja083ia02p00599
dc.identifier.citedreferenceKaeppler, S. R., Hampton, D. L., Nicolls, M. J., Strømme, A., Solomon, S. C., Hecht, J. H., & Conde, M. G. ( 2015 ). An investigation comparing ground‐based techniques that quantify auroral electron flux and conductance. Journal of Geophysical Research: Space Physics, 120 ( 10 ), 9038 – 9056. https://doi.org/10.1002/2015JA021396
dc.identifier.citedreferenceKamide, Y. ( 1982 ). The relationship between field‐aligned currents and the auroral electrojets: A review. Space Science Reviews, 31 ( 2 ), 127 – 243. https://doi.org/10.1007/BF00215281
dc.identifier.citedreferenceKarlsson, T., Brenning, N., Marghitu, O., Marklund, G., & Buchert, S. ( 2007 ). High‐altitude signatures of ionospheric density depletions caused by field‐aligned currents. Space Physics. arXiv:0704.1610v1 [physics.space–ph].
dc.identifier.citedreferenceKarlsson, T., & Marklund, G. ( 1998 ). Simulations of effects of small‐scale auroral current closure in the return current region. Physics of Space Plasmas, 15, 401.
dc.identifier.citedreferenceKnight, S. ( 1973 ). Parallel electric fields. Planetary and Space Science, 21 ( 5 ), 741 – 750. https://doi.org/10.1016/0032-0633(73)90093-7
dc.identifier.citedreferenceKorth, H., Zhang, Y., Anderson, B. J., Sotirelis, T., & Waters, C. L. ( 2014 ). Statistical relationship between large‐scale upward field‐aligned currents and electron precipitation. Journal of Geophysical Research: Space Physics, 119 ( 8 ), 6715 – 6731. https://doi.org/10.1002/2014ja019961
dc.identifier.citedreferenceLühr, H., Huang, T., Wing, S., Kervalishvili, G., Rauberg, J., & Korth, H. ( 2016 ). Filamentary field‐aligned currents at the polar cap region during northward interplanetary magnetic field derived with the Swarm constellation. Annales Geophysicae, 34 ( 10 ), 901 – 915. https://doi.org/10.5194/angeo-34-901-2016
dc.identifier.citedreferenceLühr, H., Park, J., Gjerloev, J. W., Rauberg, J., Michaelis, I., Merayo, J. M. G., & Brauer, P. ( 2014 ). Field‐aligned currents’ scale analysis performed with the Swarm constellation. Geophysical Research Letters, 42, 1 – 8. https://doi.org/10.1002/2014GL062453.We
dc.identifier.citedreferenceLummerzheim, D., Rees, M. H., Craven, J. D., & Frank, L. A. ( 1991 ). Ionospheric conductances derived from DE‐1 aurora1 images. Journal of Atmospheric and Terrestrial Physics, 53, 281 – 292. https://doi.org/10.1016/0021-9169(91)90112-K
dc.identifier.citedreferenceMcGranaghan, R., Knipp, D. J., Matsuo, T., Godinez, H., Redmon, R. J., Solomon, S. C., & Morley, S. K. ( 2015 ). Modes of high‐latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis. Journal of Geophysical Research: Space Physics, 120 ( 12 ), 11 – 013. https://doi.org/10.1002/2015ja021828
dc.identifier.citedreferenceMcGranaghan, R. M., Mannucci, A. J., & Forsyth, C. ( 2017 ). A comprehensive analysis of multiscale field‐aligned currents: Characteristics, controlling parameters, and relationships. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 11931 – 11. https://doi.org/10.1002/2017JA024742
dc.identifier.citedreferenceMoen, J., & Brekke, A. ( 1993 ). The solar flux influence on quiet time conductances in the auroral ionosphere. Geophysical Research Letters, 20 ( 10 ), 971 – 974. https://doi.org/10.1029/92GL02109
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance model for extreme events: Impact of auroral conductance on space weather forecasts. Space Weather, 18, 1 – 27. https://doi.org/10.1029/2020sw002551
dc.identifier.citedreferenceMurphy, K. R., Mann, I. R., Rae, I. J., Waters, C. L., Frey, H. U., Kale, A., et al. ( 2013 ). The detailed spatial structure of field‐aligned currents comprising the substorm current wedge. Journal of Geophysical Research: Space Physics, 118 ( 12 ), 7714 – 7727. https://doi.org/10.1002/2013JA018979
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, 9207. https://doi.org/10.1029/2009JA014326
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.