Show simple item record

B7H3 expression and significance in idiopathic pulmonary fibrosis

dc.contributor.authorFang, Chuling
dc.contributor.authorRinke, Andrew E
dc.contributor.authorWang, Jing
dc.contributor.authorFlaherty, Kevin R
dc.contributor.authorPhan, Sem H
dc.contributor.authorLiu, Tianju
dc.date.accessioned2022-03-07T03:13:38Z
dc.date.available2023-04-06 22:13:36en
dc.date.available2022-03-07T03:13:38Z
dc.date.issued2022-03
dc.identifier.citationFang, Chuling; Rinke, Andrew E; Wang, Jing; Flaherty, Kevin R; Phan, Sem H; Liu, Tianju (2022). "B7H3 expression and significance in idiopathic pulmonary fibrosis." The Journal of Pathology 256(3): 310-320.
dc.identifier.issn0022-3417
dc.identifier.issn1096-9896
dc.identifier.urihttps://hdl.handle.net/2027.42/171883
dc.description.abstractThe clinical significance of B7H3 (CD276) and its cleavage product soluble B7H3 (sB7H3) in idiopathic pulmonary fibrosis (IPF) is unknown. Mounting evidence suggests the potential utility of peripheral blood myeloid cell enumeration to predict disease outcome and indicate active lung disease. Here we hypothesized that sB7H3 is involved in regulation of circulating myeloid cells in pulmonary fibrosis. In support of this possibility, both plasma sB7H3 and B7H3+ cells were elevated in IPF patient blood samples, which correlated negatively with lung function. To analyze its function, the effects of sB7H3 on naïve or bleomycin‐treated mice were examined. The results revealed that sB7H3 injection induced an influx of myeloid‐derived suppressor cells (MDSCs) and Ccl2 expression in lung tissue of naïve mice, accompanied by enhanced overall inflammation. Additionally, sB7H3 caused accumulation of MDSCs in bone marrow with increased expression of inflammatory cytokines. Notably, in vitro assays revealed chemotaxis of MDSCs to sB7H3, which was dependent on TLT‐2 (TREML2), a putative receptor for sB7H3. Thus, increased circulating sB7H3 and/or B7H3+ cells in IPF patient blood samples correlated with lung function decline and potential immunosuppressive status. The correlation of sB7H3 with deterioration of lung function might be due to its ability to enhance inflammation and recruitment of MDSCs into the lung and their expansion in the bone marrow, and thus potentially contribute to IPF exacerbation. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otherinflammation
dc.subject.otherMDSC
dc.subject.otherbone marrow
dc.subject.otherB7H3
dc.subject.otherIPF
dc.subject.othercell migration
dc.titleB7H3 expression and significance in idiopathic pulmonary fibrosis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171883/1/path5838_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171883/2/path5838.pdf
dc.identifier.doi10.1002/path.5838
dc.identifier.sourceThe Journal of Pathology
dc.identifier.citedreferenceChen X, Li Y, Blankson S, et al. B7‐H3 augments inflammatory responses and exacerbates brain damage via amplifying NF‐κB p65 and MAPK p38 activation during experimental pneumococcal meningitis. PLoS One 2017; 12: e0171146.
dc.identifier.citedreferenceInamura K, Amori G, Yuasa T, et al. Relationship of B7‐H3 expression in tumor cells and tumor vasculature with FOXP3+ regulatory T cells in renal cell carcinoma. Cancer Manag Res 2019; 11: 7021 – 7030.
dc.identifier.citedreferenceChen L, Zhang G, Sheng S, et al. Upregulation of soluble B7‐H3 in NSCLC‐derived malignant pleural effusion: a potential diagnostic biomarker correlated with NSCLC staging. Clin Chim Acta 2016; 457: 81 – 85.
dc.identifier.citedreferenceYoon BR, Chung YH, Yoo SJ, et al. Preferential induction of the T cell auxiliary signaling molecule B7‐H3 on synovial monocytes in rheumatoid arthritis. J Biol Chem 2016; 291: 4048 – 4057.
dc.identifier.citedreferenceNakashima T, Liu T, Hu B, et al. Role of B7H3/IL‐33 signaling in pulmonary fibrosis‐induced profibrogenic alterations in bone marrow. Am J Respir Crit Care Med 2019; 200: 1032 – 1044.
dc.identifier.citedreferenceRaghu G, Remy‐Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 2018; 198: e44 – e68.
dc.identifier.citedreferenceHashimoto N, Jin H, Liu T, et al. Bone marrow‐derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004; 113: 243 – 252.
dc.identifier.citedreferenceLiu T, Baek HA, Yu H, et al. FIZZ2/RELM‐β induction and role in pulmonary fibrosis. J Immunol 2011; 187: 450 – 461.
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001; 25: 402 – 408.
dc.identifier.citedreferenceDing L, Liu T, Wu Z, et al. Bone marrow CD11c + cell‐derived amphiregulin promotes pulmonary fibrosis. J Immunol 2016; 197: 303 – 312.
dc.identifier.citedreferenceLuo L, Zhu G, Xu H, et al. B7‐H3 promotes pathogenesis of autoimmune disease and inflammation by regulating the activity of different T cell subsets. PLoS One 2015; 10: e0130126.
dc.identifier.citedreferenceJanick‐Buckner D, Ranges GE, Hacker MP. Alteration of bronchoalveolar lavage cell populations following bleomycin treatment in mice. Toxicol Appl Pharmacol 1989; 100: 465 – 473.
dc.identifier.citedreferenceMoore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294: L152 – L160.
dc.identifier.citedreferenceIida K, Miyake M, Onishi K, et al. Prognostic impact of tumor‐infiltrating CD276/Foxp3‐positive lymphocytes and associated circulating cytokines in patients undergoing radical nephrectomy for localized renal cell carcinoma. Oncol Lett 2019; 17: 4004 – 4010.
dc.identifier.citedreferenceEmura I, Usuda H. Acute exacerbation of IPF has systemic consequences with multiple organ injury, with SRA + and TNF‐α + cells in the systemic circulation playing central roles in multiple organ injury. BMC Pulm Med 2016; 16: 138.
dc.identifier.citedreferenceSchupp JC, Binder H, Jäger B, et al. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis. PLoS One 2015; 10: e0116775.
dc.identifier.citedreferenceFukushima A, Sumi T, Fukuda K, et al. B7‐H3 regulates the development of experimental allergic conjunctivitis in mice. Immunol Lett 2007; 113: 52 – 57.
dc.identifier.citedreferenceGu W, Zhang X, Yan Y, et al. B7‐H3 participates in the development of asthma by augmentation of the inflammatory response independent of TLR2 pathway. Sci Rep 2017; 7: 40398.
dc.identifier.citedreferenceAltan M, Pelekanou V, Schalper KA, et al. B7‐H3 expression in NSCLC and its association with B7‐H4, PD‐L1 and tumor‐infiltrating lymphocytes. Clin Cancer Res 2017; 23: 5202 – 5209.
dc.identifier.citedreferenceBenzon B, Zhao SG, Haffner MC, et al. Correlation of B7‐H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression‐based analysis. Prostate Cancer Prostatic Dis 2017; 20: 28 – 35.
dc.identifier.citedreferenceChen JT, Chen CH, Ku KL, et al. Glycoprotein B7‐H3 overexpression and aberrant glycosylation in oral cancer and immune response. Proc Natl Acad Sci U S A 2015; 112: 13057 – 13062.
dc.identifier.citedreferenceFernandez IE, Greiffo FR, Frankenberger M, et al. Peripheral blood myeloid‐derived suppressor cells reflect disease status in idiopathic pulmonary fibrosis. Eur Respir J 2016; 48: 1171 – 1183.
dc.identifier.citedreferenceWang L, Cao NN, Wang S, et al. Roles of coinhibitory molecules B7‐H3 and B7‐H4 in esophageal squamous cell carcinoma. Tumour Biol 2016; 37: 2961 – 2971.
dc.identifier.citedreferenceLeitner J, Klauser C, Pickl WF, et al. B7‐H3 is a potent inhibitor of human T‐cell activation: no evidence for B7‐H3 and TREML2 interaction. Eur J Immunol 2009; 39: 1754 – 1764.
dc.identifier.citedreferenceWynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med 2011; 208: 1339 – 1350.
dc.identifier.citedreferenceSanaei MJ, Salimzadeh L, Bagheri N. Crosstalk between myeloid‐derived suppressor cells and the immune system in prostate cancer: MDSCs and immune system in prostate cancer. J Leukoc Biol 2020; 107: 43 – 56.
dc.identifier.citedreferenceZhang X, Zhao X, Sun H, et al. The role of miR‐29c/B7‐H3 axis in children with allergic asthma. J Transl Med 2018; 16: 218.
dc.identifier.citedreferenceThe Idiopathic Pulmonary Fibrosis Clinical Research Network, Raghu G, Anstrom KJ, et al. Prednisone, azathioprine, and N ‐acetylcysteine for pulmonary fibrosis. N Engl J Med 2012; 366: 1968 – 1977.
dc.identifier.citedreferenceRaghu G. Idiopathic pulmonary fibrosis: new evidence and an improved standard of care in 2012. Lancet 2012; 380: 699 – 701.
dc.identifier.citedreferenceMagnini D, Montemurro G, Iovene B, et al. Idiopathic pulmonary fibrosis: molecular endotypes of fibrosis stratifying existing and emerging therapies. Respiration 2017; 93: 379 – 395.
dc.identifier.citedreferenceFernandez IE, Kass DJ. Do circulating monocytes promote and predict idiopathic pulmonary fibrosis progression? Am J Respir Crit Care Med 2021; 204: 9 – 11.
dc.identifier.citedreferenceBalestro E, Calabrese F, Turato G, et al. Immune inflammation and disease progression in idiopathic pulmonary fibrosis. PLoS One 2016; 11: e0154516.
dc.identifier.citedreferenceAshitani J, Mukae H, Taniguchi H, et al. Granulocyte‐colony stimulating factor levels in bronchoalveolar lavage fluid from patients with idiopathic pulmonary fibrosis. Thorax 1999; 54: 1015 – 1020.
dc.identifier.citedreferenceKreuter M, Lee JS, Tzouvelekis A, et al. Monocyte count as a prognostic biomarker in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2021; 204: 74 – 81.
dc.identifier.citedreferenceHomolka J, Ziegenhagen MW, Gaede KI, et al. Systemic immune cell activation in a subgroup of patients with idiopathic pulmonary fibrosis. Respiration 2003; 70: 262 – 269.
dc.identifier.citedreferenceReilkoff RA, Peng H, Murray LA, et al. Semaphorin 7a + regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor‐β1‐induced pulmonary fibrosis. Am J Respir Crit Care Med 2013; 187: 180 – 188.
dc.identifier.citedreferenceYang S, Wei W, Zhao Q. B7‐H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci 2020; 16: 1767 – 1773.
dc.identifier.citedreferenceZhang G, Hou J, Shi J, et al. Soluble CD276 (B7‐H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology 2008; 123: 538 – 546.
dc.identifier.citedreferenceGreenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005; 23: 515 – 548.
dc.identifier.citedreferenceZhang SS, Tang J, Yu SY, et al. Expression levels of B7‐H3 and TLT‐2 in human oral squamous cell carcinoma. Oncol Lett 2015; 10: 1063 – 1068.
dc.identifier.citedreferenceStanciu LA, Bellettato CM, Laza‐Stanca V, et al. Expression of programmed death‐1 ligand (PD‐L) 1, PD‐L2, B7‐H3, and inducible costimulator ligand on human respiratory tract epithelial cells and regulation by respiratory syncytial virus and type 1 and 2 cytokines. J Infect Dis 2006; 193: 404 – 412.
dc.identifier.citedreferenceSuh WK, Wang SX, Jheon AH, et al. The immune regulatory protein B7‐H3 promotes osteoblast differentiation and bone mineralization. Proc Natl Acad Sci U S A 2004; 101: 12969 – 12973.
dc.identifier.citedreferenceHashiguchi M, Kobori H, Ritprajak P, et al. Triggering receptor expressed on myeloid cell‐like transcript 2 (TLT‐2) is a counter‐receptor for B7‐H3 and enhances T cell responses. Proc Natl Acad Sci U S A 2008; 105: 10495 – 10500.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.