Show simple item record

Removing Diurnal Signals and Longer Term Trends From Electron Flux and ULF Correlations: A Comparison of Spectral Subtraction, Simple Differencing, and ARIMAX Models

dc.contributor.authorSimms, Laura E.
dc.contributor.authorEngebretson, Mark J.
dc.contributor.authorReeves, Geoffrey D.
dc.date.accessioned2022-03-07T03:13:53Z
dc.date.available2023-03-06 22:13:50en
dc.date.available2022-03-07T03:13:53Z
dc.date.issued2022-02
dc.identifier.citationSimms, Laura E.; Engebretson, Mark J.; Reeves, Geoffrey D. (2022). "Removing Diurnal Signals and Longer Term Trends From Electron Flux and ULF Correlations: A Comparison of Spectral Subtraction, Simple Differencing, and ARIMAX Models." Journal of Geophysical Research: Space Physics 127(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/171887
dc.description.abstractSimultaneously cycling space weather parameters may show high correlations even if there is no immediate relationship between them. We successfully remove diurnal cycles using spectral subtraction, and remove both diurnal and longer cycles (e.g., the 27 days solar cycle) with a difference transformation. Other methods of diurnal cycle removal (daily averaging, moving averages [MAs], and simpler spectral subtraction using regression) are less successful at removing cycles. We apply spectral subtraction (a finite impulse response equiripple bandstop filter) to hourly electron flux (Los Alamos National Laboratory satellite data) and a ground‐based ULF index to remove a 24 hr noise signal. This results in smoother time series appropriate for short‐term (approximately < 1 week) correlation and observational studies. However, spectral subtraction may not remove longer cycles such as the 27 days and 11 yr solar cycles. A differencing transformation (yt – yt−24) removes not only the 24 hr noise signal but also the 27 days solar cycle, autocorrelation, and longer trends. This results in a low correlation between electron flux and the ULF index over long periods of time (maximum of 0.1). Correlations of electron flux and the ULF index with solar wind velocity (differenced at yt – yt−1) are also lower than previously reported (≤0.1). An autoregressive, MA transfer function model (ARIMAX) shows that there are significant cumulative effects of solar wind velocity on ULF activity over long periods, but correlations of velocity and ULF waves with flux are only seen over shorter time spans of more homogeneous geomagnetic activity levels.Plain Language SummaryRelationships between space physics processes are often based on correlations. However, variables following the same cycles or trends may show a spurious correlation that has nothing to do with their physical relationship. In space weather data, these common cycles may result from satellites orbiting the Earth daily, or the 27 days or 11 yr activity cycles of the Sun. The daily cycle can be removed using noise reduction techniques similar to that used to clean audio data. Differencing (subtracting the previous observation) can also remove both short‐term cycles and longer trends. However, we find that an autoregressive‐moving average time series model (ARIMAX) most successfully removes cycles and trends and allows the actual correlations between variables to be measured. Using ARIMAX models, we confirm that there are cumulative effects of solar wind velocity on the ULF index, but little correlation between either velocity or ULF waves with electron flux over long periods of time. This argues for limiting correlational studies to periods of constant geomagnetic activity.Key PointsCorrelations between space weather data can be artificially inflated by common cycles and trends unrelated to physical relationshipsCycles and trends can be removed by spectral subtraction, differencing, or autoregressive moving average transfer function modelsTransfer function models with cycles removed show correlations between wave activity and solar wind velocity, but not with electron flux
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherULF waves
dc.subject.othersignal processing
dc.subject.otherARIMAX models
dc.subject.othersolar wind velocity
dc.subject.otherRelativistic electron flux
dc.titleRemoving Diurnal Signals and Longer Term Trends From Electron Flux and ULF Correlations: A Comparison of Spectral Subtraction, Simple Differencing, and ARIMAX Models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171887/1/jgra57021.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171887/2/jgra57021_am.pdf
dc.identifier.doi10.1029/2021JA030021
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceReeves, G. D., Baker, D. N., Belian, R. D., Blake, J. B., Cayton, T. E., Fennell, J. F., et al. ( 1998 ). The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophysical Research Letters, 25 ( 17 ), 3265 – 3268. https://doi.org/10.1029/98gl02509
dc.identifier.citedreferenceLoto’aniu, T. M. ( 2006 ). Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. Journal of Geophysical Research: Space Physics, 111, A04218. https://doi.org/10.1029/2005JA011355
dc.identifier.citedreferenceLoto’aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R., & Bonnell, J. W. ( 2010 ). Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. Journal of Geophysical Research: Space Physics, 115, A12245. https://doi.org/10.1029/2010JA015755
dc.identifier.citedreferenceMakridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. ( 1998 ). Forecasting: Methods and applications ( 3rd ed., p. 652). New York, NY: John Wiley and Sons.
dc.identifier.citedreferenceMathie, R. A., & Mann, I. R. ( 2000 ). A correlation between extended intervals of ULF wave power and storm‐time geosynchronous relativistic electron flux enhancements. Geophysical Research Letters, 27 ( 20 ), 3261 – 3264. https://doi.org/10.1029/2000GL003822
dc.identifier.citedreferenceMathie, R. A., & Mann, I. R. ( 2001 ). On the solar wind control of Pc5 ULF pulsation power at mid‐latitudes—Implications for MeV electron acceleration in the outer radiation belt. Journal of Geophysical Research: Space Physics, 106, 29783 – 29796. https://doi.org/10.1029/2001JA000002
dc.identifier.citedreferenceNeter, J., Wasserman, W., & Kutner, M. ( 1985 ). Applied linear statistical models ( 2 nd ed., p. 112). Homewood, IL, USA: Richard D. Irwin, Inc.
dc.identifier.citedreferenceO’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324
dc.identifier.citedreferenceO’Brien, T. P., Sornette, D., & McPherron, R. L. ( 2001 ). Statistical asynchronous regression: Determining the relationship between two quantities that are not measured simultaneously. Journal of Geophysical Research: Space Physics, 106, 13247 – 13259. https://doi.org/10.1029/2000JA900193
dc.identifier.citedreferenceOppenheim, A. V., & Schafer, R. W. ( 2010 ). Discrete‐time signal processing ( 3rd ed., p. 1132). Hoboken, NJ: Pearson Education, Inc.
dc.identifier.citedreferencePankratz, A. ( 1991 ). Forecasting with dynamic regression models (p. 386). New York, NY: John Wiley & Sons Inc.
dc.identifier.citedreferenceParks, T., & McClellan, J. ( 1972 ). Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Transactions on Circuit Theory, 19 ( 2 ), 189 – 194. https://doi.org/10.1109/TCT.1972.1083419
dc.identifier.citedreferencePilipenko, V. A., Kozyreva, O. V., Engebretson, M. J., & Soloviev, A. A. ( 2017 ). ULF wave power index for space weather and geophysical applications: A review. Russian Journal of Earth Sciences, 17, ES1004. https://doi.org/10.2205/2017ES000597
dc.identifier.citedreferencePotapov, A. S., Tsegmed, B., & Ryzhakova, L. V. ( 2012 ). Relationship between the fluxes of relativistic electrons at geosynchronous orbit and the level of ULF activity on the Earth’s surface and in the solar wind during the 23rd solar activity cycle. Cosmic Research, 50 ( 2 ), 124 – 140. https://doi.org/10.1134/S0010952512020086
dc.identifier.citedreferenceReeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research: Space Physics, 116, A02213. https://doi.org/10.1029/2010JA015735
dc.identifier.citedreferenceReeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., et al. ( 2013 ). Electron acceleration in the heart of the Van Allen radiation belts. Science, 341 ( 6149 ), 991 – 994. https://doi.org/10.1126/science.1237743
dc.identifier.citedreferenceRigler, E. J., Baker, D. N., Weigel, R. S., Vassiliadis, D., & Klimas, A. J. ( 2004 ). Adaptive linear prediction of radiation belt electrons using the Kalman filter. Space Weather, 2, S03003. https://doi.org/10.1029/2003SW000036
dc.identifier.citedreferenceSimms, L. E., & Engebretson, M. J. ( 2020 ). Classifier neural network models predict relativistic electron events at geosynchronous orbit better than multiple regression or ARMAX models. Journal of Geophysical Research: Space Physics, 125, e2019JA027357. https://doi.org/10.1029/2019JA027357
dc.identifier.citedreferenceSimms, L. E., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1029/2017JA025002
dc.identifier.citedreferenceSimms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121, 3181 – 3197. https://doi.org/10.1002/2016JA022414
dc.identifier.citedreferenceSimms, L. E., Engebretson, M. J., Rodger, C. J., Dimitrakoudis, S., Mann, I. R., & Chi, P. J. ( 2021 ). The Combined influence of lower band chorus and ULF waves on radiation belt electron fluxes at individual L‐shells. Journal of Geophysical Research: Space Physics, 126 ( 5 ), e2020JA028755. https://doi.org/10.1029/2020JA028755
dc.identifier.citedreferenceSimms, L. E., Pilipenko, V. A., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux following storms at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119, 7297 – 7318. https://doi.org/10.1002/2014JA019955
dc.identifier.citedreferenceSu, Y.‐J., Quinn, J. M., Johnston, W. R., McCollough, J. P., & Starks, M. J. ( 2014 ). Specification of >2 MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit. Space Weather, 12, 470 – 486. https://doi.org/10.1002/2014SW001069
dc.identifier.citedreferenceBaker, D. N., McPherron, R. L., Cayton, T. E., & Klebesadel, R. W. ( 1990 ). Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research: Space Physics, 95 ( A9 ), 15133 – 15140. https://doi.org/10.1029/ja095ia09p15133
dc.identifier.citedreferenceBorovsky, J. E., & Denton, M. H. ( 2014 ). Exploring the cross‐correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphere. Journal of Geophysical Research: Space Physics, 119, 4307 – 4334. https://doi.org/10.1002/2014JA019876
dc.identifier.citedreferenceBoynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time‐dependent 40 keV electron flux models for geostationary orbit. Space Weather, 17, 894 – 906. https://doi.org/10.1029/2018SW002128
dc.identifier.citedreferenceBoynton, R. J., Aryan, H., Dimmock, A. P., & Balikhin, M. A. ( 2020 ). System identification of local time electron fluencies at geostationary orbit. Journal of Geophysical Research: Space Physics, 125, e2020JA028262. https://doi.org/10.1029/2020JA028262
dc.identifier.citedreferenceBrown, R. G., & Hwang, Y. C. ( 2012 ). Introduction to random signals and applied Kalman filtering ( 4th ed. ). USA: John Wiley & Sons, Inc.
dc.identifier.citedreferenceEngebretson, M., Glassmeier, K. H., Stellmacher, M., Hughes, W. J., & Luhr, H. ( 1998 ). The dependence of high‐latitude Pc5 wave power on solar wind velocity and on the phase of high‐speed solar wind streams. Journal of Geophysical Research, 103, 26271 – 26283. https://doi.org/10.1029/97JA03143
dc.identifier.citedreferenceGranger, C. W. J., & Newbold, P. ( 1974 ). Spurious regression in econometrics. Journal of Econometrics, 2, 111 – 120. https://doi.org/10.1016/0304-4076(74)90034-7
dc.identifier.citedreferenceHyndman, R. J., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice ( 2nd ed, p. 291 ). Victoria, Australia: OTexts, Heathmont.
dc.identifier.citedreferenceKozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J., & Romanova, N. ( 2007 ). In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary Space Sciences, 55, 755 – 769. https://doi.org/10.1016/j.pss.2006.03.013
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.