Show simple item record

Retrieval of Surface Spectral Emissivity in Polar Regions Based on the Optimal Estimation Method

dc.contributor.authorXie, Yan
dc.contributor.authorHuang, Xianglei
dc.contributor.authorChen, Xiuhong
dc.contributor.authorL’ecuyer, Tristan S.
dc.contributor.authorDrouin, Brian J.
dc.contributor.authorWang, Jun
dc.date.accessioned2022-03-07T03:14:10Z
dc.date.available2023-04-06 22:14:08en
dc.date.available2022-03-07T03:14:10Z
dc.date.issued2022-03-16
dc.identifier.citationXie, Yan; Huang, Xianglei; Chen, Xiuhong; L’ecuyer, Tristan S. ; Drouin, Brian J.; Wang, Jun (2022). "Retrieval of Surface Spectral Emissivity in Polar Regions Based on the Optimal Estimation Method." Journal of Geophysical Research: Atmospheres 127(5): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/171894
dc.description.abstractSurface spectral emissivity plays an important role in the polar radiation budget. The significance of surface emissivity in the far- infrared (far- IR) has been recognized by recent studies, yet there have been no observations to constrain far- IR surface spectral emissivity over the entire polar regions. In preparation for the Polar Radiant Energy in the Far- InfraRed Experiment (PREFIRE) mission, this study develops and assesses an optimal estimation- based retrieval algorithm to estimate both mid- IR and far- IR polar surface emissivity from the future PREFIRE measurements. Synthetic PREFIRE spectra are simulated by feeding the ERA5 reanalysis and a global surface emissivity data set to a radiative transfer model. Information content analysis indicates that the far- IR surface emissivity retrievals can be more influenced by the atmospheric water vapor abundance than the mid- IR counterparts. When the total column water vapor is above 1 cm, the far- IR surface emissivity retrievals largely rely on the a priori constraints. Performance of the optimal- estimation algorithm is assessed using 960 synthetic PREFIRE clear- sky radiance spectra over the Arctic. The results based on current best estimate of instrument performance show that all retrievals converge within 15 iterations, the retrieved surface spectral emissivity has a mean bias within ±0.01 and a root- mean- square error less than 0.024. The far- IR surface emissivity retrievals are much more affected by the a priori choice than the mid- IR ones. A properly constructed a priori covariance can also help to improve the computational efficiency. Influences of other factors for future operational retrievals are also discussed.Key PointsAn optimal- estimation algorithm for surface spectral emissivity retrieval is developed and assessed for the forthcoming PREFIRE missionSurface spectral emissivity retrievals in the far- infrared can be significantly influenced by the atmospheric water vapor abundanceCompared to the mid- infrared, the far- infrared surface emissivity retrievals are more affected by the choice of a priori constraints
dc.publisherThe TIMS Data User- s Workshop
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroptimal estimation
dc.subject.othersurface spectral emissivity
dc.subject.otherPREFIRE mission
dc.subject.otherfar- IR
dc.titleRetrieval of Surface Spectral Emissivity in Polar Regions Based on the Optimal Estimation Method
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171894/1/jgrd57653.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171894/2/jgrd57653_am.pdf
dc.identifier.doi10.1029/2021JD035677
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferencePalchetti, L., Barucci, M., Belotti, C., Bianchini, G., Cluzet, B., D’Amato, F., et al. ( 2021 ). Observations of the downwelling far- infrared atmospheric emission at the Zugspitze observatory. Earth System Science Data, 13 ( 9 ), 4303 - 4312. https://doi.org/10.5194/essd-13-4303-2021
dc.identifier.citedreferenceMilstein, A. B., & Blackwell, W. J. ( 2016 ). Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. Journal of Geophysical Research: Atmospheres, 121 ( 4 ), 1414 - 1430. https://doi.org/10.1002/2015JD024008
dc.identifier.citedreferenceMurray, J. E., Brindley, H. E., Fox, S., Bellisario, C., Pickering, J. C., Fox, C., et al. ( 2020 ). Retrievals of high- latitude surface emissivity across the infrared from high- altitude aircraft flights. Journal of Geophysical Research: Atmospheres, 125 ( 22 ), e2020JD033672. https://doi.org/10.1029/2020JD033672
dc.identifier.citedreferenceNalli, N. R., Gambacorta, A., Liu, Q., Barnet, C. D., Tan, C., Iturbide- Sanchez, F., et al. ( 2018 ). Validation of atmospheric profile retrievals from the SNPP NOAA- unique combined atmospheric processing system. Part 1: Temperature and moisture. IEEE Transactions on Geoscience and Remote Sensing, 56 ( 1 ), 180 - 190. https://doi.org/10.1109/TGRS.2017.2744558
dc.identifier.citedreferenceNygård, T., Vihma, T., Birnbaum, G., Hartmann, J., King, J., Lachlan- Cope, T., et al. ( 2016 ). Validation of eight atmospheric reanalyses in the Antarctic Peninsula region. Quarterly Journal of the Royal Meteorological Society, 142 ( 695 ), 684 - 692. https://doi.org/10.1002/qj.2691
dc.identifier.citedreferencePalchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy- Peyret, C., Carli, B., et al. ( 2020 ). Forum: Unique far- infrared satellite observations to better understand how earth radiates energy to space. Bulletin of the American Meteorological Society, 101 ( 12 ), E2030 - E2046. https://doi.org/10.1175/bams-d-19-0322.1
dc.identifier.citedreferencePan, F., Huang, X., Leroy, S. S., Lin, P., Strow, L. L., Ming, Y., & Ramaswamy, V. ( 2017 ). The stratospheric changes inferred from 10 years of AIRS and AMSU- A radiances. Journal of Climate, 30 ( 15 ), 6005 - 6016. https://doi.org/10.1175/jcli-d-17-0037.1
dc.identifier.citedreferencePeterson, D., & Wang, J. ( 2013 ). A sub- pixel- based calculation of fire radiative power from MODIS observations: 2. Sensitivity analysis and potential fire weather application. Remote Sensing of Environment, 129, 231 - 249. https://doi.org/10.1016/j.rse.2012.10.020
dc.identifier.citedreferencePougatchev, N., August, T., Calbet, X., Hultberg, T., Oduleye, O., Schlüssel, P., et al. ( 2009 ). IASI temperature and water vapor retrievals - Error assessment and validation. Atmospheric Chemistry and Physics, 9 ( 17 ), 6453 - 6458. https://doi.org/10.5194/acp-9-6453-2009
dc.identifier.citedreferencePrice, J. C. ( 1984 ). Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research: Atmospheres, 89 ( D5 ), 7231 - 7237. https://doi.org/10.1029/JD089iD05p07231
dc.identifier.citedreferenceRathke, C., Fischer, J., Neshyba, S., & Shupe, M. ( 2002 ). Improving IR cloud phase determination with 20 microns spectral observations. Geophysical Research Letters, 29 ( 8 ), 50 - 51. https://doi.org/10.1029/2001GL014594
dc.identifier.citedreferenceRockwell, B. W., & Hofstra, A. H. ( 2008 ). Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data- Implications for geologic mapping and mineral resource investigations in well- studied and Frontier areas. Geosphere, 4 ( 1 ), 218 - 246. https://doi.org/10.1130/ges00126.1
dc.identifier.citedreferenceRodgers, C. D. ( 1976 ). Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Reviews of Geophysics, 14 ( 4 ), 609 - 624. https://doi.org/10.1029/RG014i004p00609
dc.identifier.citedreferenceScarlat, R. C., Heygster, G., & Pedersen, L. T. ( 2017 ). Experiences with an optimal estimation algorithm for surface and atmospheric parameter retrieval from passive microwave data in the Arctic. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 ( 9 ), 3934 - 3947. https://doi.org/10.1109/JSTARS.2017.2739858
dc.identifier.citedreferenceSchlüssel, P., Hultberg, T. H., Phillips, P. L., August, T., & Calbet, X. ( 2005 ). The operational IASI Level 2 processor. Advances in Space Research, 36 ( 5 ), 982 - 988. https://doi.org/10.1016/j.asr.2005.03.008
dc.identifier.citedreferenceSeemann, S. W., Borbas, E. E., Knuteson, R. O., Stephenson, G. R., & Huang, H.- L. ( 2008 ). Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. Journal of Applied Meteorology and Climatology, 47 ( 1 ), 108 - 123. https://doi.org/10.1175/2007jamc1590.1
dc.identifier.citedreferenceShannon, C. E., & Weaver, W. ( 1949 ). The mathematical theory of communication (p. 144). Champaign, IL: University of Illinois Press (ISBN: 0252725484).
dc.identifier.citedreferenceSmith, N., & Barnet, C. D. ( 2019 ). Uncertainty characterization and propagation in the community long- term infrared microwave combined atmospheric product system (CLIMCAPS). Remote Sensing, 11 ( 10 ), 1227. https://doi.org/10.3390/rs11101227
dc.identifier.citedreferenceSusskind, J., Barnet, C. D., & Blaisdell, J. M. ( 2003 ). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 390 - 409. https://doi.org/10.1109/TGRS.2002.808236
dc.identifier.citedreferenceTurner, D. D., Clough, S. A., Liljegren, J. C., Clothiaux, E. E., Cady- Pereira, K. E., & Gaustad, K. L. ( 2007 ). Retrieving liquid water path and precipitable water vapor from the atmospheric radiation measurement (ARM) microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 45 ( 11 ), 3680 - 3690. https://doi.org/10.1109/TGRS.2007.903703
dc.identifier.citedreferenceTurner, D. D., & Löhnert, U. ( 2014 ). Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground- based atmospheric emitted radiance interferometer (AERI). Journal of Applied Meteorology and Climatology, 53 ( 3 ), 752 - 771. https://doi.org/10.1175/jamc-d-13-0126.1
dc.identifier.citedreferenceWan, Z., & Li, Z.- L. ( 1997 ). A physics- based algorithm for retrieving land- surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35 ( 4 ), 980 - 996. https://doi.org/10.1109/36.602541
dc.identifier.citedreferenceWood, N. B., & L’Ecuyer, T. S. ( 2021 ). What millimeter- wavelength radar reflectivity reveals about snowfall: An information- centric analysis. Atmospheric Measurement Techniques, 14 ( 2 ), 869 - 888. https://doi.org/10.5194/amt-14-869-2021
dc.identifier.citedreferenceXu, X., Wang, J., Zeng, J., Hou, W., Meyer, K. G., E Platnick, S., & Wilcox, E. ( 2018 ). A pilot study of shortwave spectral fingerprints of smoke aerosols above liquid clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 221, 38 - 50. https://doi.org/10.1016/j.jqsrt.2018.09.024
dc.identifier.citedreferenceZhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., Yang, P., et al. ( 2011 ). Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 4 ), 1277 - 1290. https://doi.org/10.1109/TGRS.2010.2051036
dc.identifier.citedreferenceZhou, D. K., Smith, W. L., Liu, X., Larar, A. M., Mango, S. A., & Huang, H.- L. ( 2007 ). Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. Journal of the Atmospheric Sciences, 64 ( 3 ), 969 - 982. https://doi.org/10.1175/jas3877.1
dc.identifier.citedreferenceClough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady- Pereira, K., et al. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 - 244. https://doi.org/10.1016/j.jqsrt.2004.05.058
dc.identifier.citedreferenceColl, C., Caselles, V., Valor, E., & Rubio, E. ( 2003 ). Validation of temperature- emissivity separation and split- window methods from TIMS data and ground measurements. Remote Sensing of Environment, 85 ( 2 ), 232 - 242. https://doi.org/10.1016/S0034-4257(03)00003-8
dc.identifier.citedreferenceBackus, G., Gilbert, F., & Bullard, E. C. ( 1970 ). Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions of the Royal Society of London - Series A: Mathematical and Physical Sciences, 266 ( 1173 ), 123 - 192. https://doi.org/10.1098/rsta.1970.0005
dc.identifier.citedreferenceBantges, R. J., Brindley, H. E., Chen, X. H., Huang, X. L., Harries, J. E., & Murray, J. E. ( 2016 ). On the detection of robust multidecadal changes in Earth- s outgoing longwave radiation spectrum. Journal of Climate, 29 ( 13 ), 4939 - 4947. https://doi.org/10.1175/jcli-d-15-0713.1
dc.identifier.citedreferenceBecker, F., & Li, Z.- L. ( 1990a ). Temperature- independent spectral indices in thermal infrared bands. Remote Sensing of Environment, 32 ( 1 ), 17 - 33. https://doi.org/10.1016/0034-4257(90)90095-4
dc.identifier.citedreferenceBecker, F., & Li, Z.- L. ( 1990b ). Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11 ( 3 ), 369 - 393. https://doi.org/10.1080/01431169008955028
dc.identifier.citedreferenceBellisario, C., Brindley, H. E., Murray, J. E., Last, A., Pickering, J., Harlow, R. C., et al. ( 2017 ). Retrievals of the far infrared surface emissivity over the Greenland Plateau using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Journal of Geophysical Research: Atmospheres, 122 ( 22 ), 152 - 112. https://doi.org/10.1002/2017JD027328
dc.identifier.citedreferenceBerk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., et al. ( 2006 ). MODTRAN5: 2006 update. Paper presented at the Proc.SPIE 6233, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. https://doi.org/10.1117/12.665077
dc.identifier.citedreferenceBoylan, P., Wang, J., Cohn, S. A., Fetzer, E., Maddy, E. S., & Wong, S. ( 2015 ). Validation of AIRS version 6 temperature profiles and surface- based inversions over Antarctica using Concordiasi dropsonde data. Journal of Geophysical Research: Atmospheres, 120 ( 3 ), 992 - 1007. https://doi.org/10.1002/2014JD022551
dc.identifier.citedreferenceCanas, T., Murray, J., & Harries, J. ( 1997 ). Tropospheric airborne Fourier transform spectrometer (TAFTS). Paper presented at Proc. SPIE, Satellite Remote Sensing of Clouds and the Atmosphere II, 3220. https://doi.org/10.1117/12.301139
dc.identifier.citedreferenceCapelle, V., Chédin, A., Péquignot, E., Schlüssel, P., Newman, S. M., & Scott, N. A. ( 2012 ). Infrared continental surface emissivity spectra and skin temperature retrieved from IASI observations over the tropics. Journal of Applied Meteorology and Climatology, 51 ( 6 ), 1164 - 1179. https://doi.org/10.1175/JAMC-D-11-0145.1
dc.identifier.citedreferenceCarissimo, A., De Feis, I., & Serio, C. ( 2005 ). The physical retrieval methodology for IASI: The δ- IASI code. Environmental Modelling & Software, 20 ( 9 ), 1111 - 1126. https://doi.org/10.1016/j.envsoft.2004.07.003
dc.identifier.citedreferenceChen, X., Huang, X., Dong, X., Xi, B., Dolinar, E. K., Loeb, N. G., et al. ( 2018 ). Using AIRS and ARM SGP clear- sky observations to evaluate meteorological reanalyses: A hyperspectral radiance closure approach. Journal of Geophysical Research: Atmospheres, 123 ( 20 ), 720 - 711. https://doi.org/10.1029/2018JD028850
dc.identifier.citedreferenceChen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far- IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41 ( 18 ), 6530 - 6537. https://doi.org/10.1002/2014GL061216
dc.identifier.citedreferenceChen, X., Huang, X., & Liu, X. ( 2013 ). Non- negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies. Journal of Geophysical Research: Atmospheres, 118 ( 13 ), 7309 - 7320. https://doi.org/10.1002/jgrd.50562
dc.identifier.citedreferenceChristensen, P. R., Bandfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., et al. ( 2001 ). Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research: Planets, 106 ( E10 ), 23823 - 23871. https://doi.org/10.1029/2000JE001370
dc.identifier.citedreferenceDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. ( 2011 ). The ERA- Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 - 597. https://doi.org/10.1002/qj.828
dc.identifier.citedreferenceDivakarla, M. G., Barnet, C. D., Goldberg, M. D., McMillin, L. M., Maddy, E., Wolf, W., et al. ( 2006 ). Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. Journal of Geophysical Research: Atmospheres, 111 ( D9 ). https://doi.org/10.1029/2005JD006116
dc.identifier.citedreferenceDivakarla, M. G., Barnet, C. D., Liu, X., Gu, D., Wilson, M., Kizer, S., et al. ( 2014 ). The CrIMSS EDR algorithm: Characterization, optimization, and validation. Journal of Geophysical Research: Atmospheres, 119 ( 8 ), 4953 - 4977. https://doi.org/10.1002/2013JD020438
dc.identifier.citedreferenceFeldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far- infrared surface emissivity and climate. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16297. https://doi.org/10.1073/pnas.1413640111
dc.identifier.citedreferenceFisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse- Nicholson, K., et al. ( 2020 ). ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resources Research, 56 ( 4 ), e2019WR026058. https://doi.org/10.1029/2019WR026058
dc.identifier.citedreferenceFisher, R. A. ( 1922 ). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London - Series A: Containing Papers of a Mathematical or Physical Character, 222 ( 594- 604 ), 309 - 368. https://doi.org/10.1098/rsta.1922.0009
dc.identifier.citedreferenceFrench, A. N., Schmugge, T. J., Ritchie, J. C., Hsu, A., Jacob, F., & Ogawa, K. ( 2008 ). Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities. Remote Sensing of Environment, 112 ( 4 ), 1730 - 1748. https://doi.org/10.1016/j.rse.2007.08.020
dc.identifier.citedreferenceGillespie, A. ( 1986 ). Lithologic mapping of silicate rocks using TIMS. Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA: The TIMS Data User- s Workshop. Retrieved from https://ntrs.nasa.gov/citations/19870007685
dc.identifier.citedreferenceGillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. ( 1998 ). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36 ( 4 ), 1113 - 1126. https://doi.org/10.1109/36.700995
dc.identifier.citedreferenceHanel, R. A., Schlachman, B., Rogers, D., & Vanous, D. ( 1971 ). Nimbus 4 Michelson interferometer. Applied Optics, 10 ( 6 ), 1376 - 1382. https://doi.org/10.1364/AO.10.001376
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz- Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 ( 730 ), 1999 - 2049. https://doi.org/10.1002/qj.3803
dc.identifier.citedreferenceHuang, X., Chen, X., Flanner, M., Yang, P., Feldman, D., & Kuo, C. ( 2018 ). Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. Journal of Climate, 31 ( 9 ), 3711 - 3727. https://doi.org/10.1175/jcli-d-17-0125.1
dc.identifier.citedreferenceHuang, X., Chen, X., Soden, B. J., & Liu, X. ( 2014 ). The spectral dimension of longwave feedback in the CMIP3 and CMIP5 experiments. Geophysical Research Letters, 41 ( 22 ), 7830 - 7837. https://doi.org/10.1002/2014GL061938
dc.identifier.citedreferenceHuang, X., Chen, X., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band- by- band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 - 3555. https://doi.org/10.1175/jas-d-15-0355.1
dc.identifier.citedreferenceHulley, G. C., Hook, S. J., Abbott, E., Malakar, N., Islam, T., & Abrams, M. ( 2015 ). The ASTER global emissivity dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophysical Research Letters, 42 ( 19 ), 7966 - 7976. https://doi.org/10.1002/2015GL065564
dc.identifier.citedreferenceHulley, G. C., Malakar, N. K., & Freepartner, R. J. ( 2016 ). Moderate resolution imaging spectroradiometer (MODIS) land surface temperature and emissivity product (MxD21) algorithm theoretical basis document collection- 6. JPL Publication Retrieved from https://lpdaac.usgs.gov/documents/107/MOD21_ATBD.pdf
dc.identifier.citedreferenceHulley, G. C., Malakar, N. K., Islam, T., & Freepartner, R. J. ( 2018 ). NASA’s MODIS and VIIRS land surface temperature and emissivity products: A long- term and consistent earth system data record. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 ( 2 ), 522 - 535. https://doi.org/10.1109/JSTARS.2017.2779330
dc.identifier.citedreferenceJakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., & Jaagus, J. ( 2012 ). Validation of atmospheric reanalyses over the central Arctic Ocean. Geophysical Research Letters, 39 ( 10 ). https://doi.org/10.1029/2012GL051591
dc.identifier.citedreferenceKidder, S. Q., Kidder, R. M., & Vonder Haar, T. H. ( 1995 ). Satellite meteorology: An introduction ( 1st ed., p. 466). Academic Press (ISBN: 9780124064300).
dc.identifier.citedreferenceL- Ecuyer, T. S., Drouin, B. J., Anheuser, J., Grames, M., Henderson, D., Huang, X., et al. ( 2021 ). The polar radiant energy in the Far InfraRed experiment: A new perspective on polar longwave energy exchanges. Bulletin of the American Meteorological Society, 1 - 46. https://doi.org/10.1175/BAMS-D-20-0155.1
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice (Vol. 2, p. 256). World Scientific (ISBN: 978- 981- 02- 2740- 1).
dc.identifier.citedreferenceL’Ecuyer, T. S., & Stephens, G. L. ( 2002 ). An estimation- based precipitation retrieval algorithm for attenuating radars. Journal of Applied Meteorology, 41 ( 3 ), 272 - 285. https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2
dc.identifier.citedreferenceLi, J., Li, J., Weisz, E., & Zhou, D. K. ( 2007 ). Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophysical Research Letters, 34 ( 16 ). https://doi.org/10.1029/2007GL030543
dc.identifier.citedreferenceLi, Z.- L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., et al. ( 2013 ). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34 ( 9- 10 ), 3084 - 3127. https://doi.org/10.1080/01431161.2012.716540
dc.identifier.citedreferenceLiu, X., Smith, W. L., Zhou, D. K., & Larar, A. ( 2006 ). Principal component- based radiative transfer model for hyperspectral sensors: Theoretical concept. Applied Optics, 45 ( 1 ), 201 - 209. https://doi.org/10.1364/AO.45.000201
dc.identifier.citedreferenceLiu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., et al. ( 2009 ). Retrieval of atmospheric profiles and cloud properties from IASI spectra using super- channels. Atmospheric Chemistry and Physics, 9 ( 23 ), 9121 - 9142. https://doi.org/10.5194/acp-9-9121-2009
dc.identifier.citedreferenceMaahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace, G. G., & Comstock, J. M. ( 2020 ). Optimal estimation retrievals and their uncertainties: What every atmospheric scientist should know. Bulletin of the American Meteorological Society, 101 ( 9 ), E1512 - E1523. https://doi.org/10.1175/bams-d-19-0027.1
dc.identifier.citedreferenceMasiello, G., Serio, C., & Antonelli, P. ( 2012 ). Inversion for atmospheric thermodynamical parameters of IASI data in the principal components space. Quarterly Journal of the Royal Meteorological Society, 138 ( 662 ), 103 - 117. https://doi.org/10.1002/qj.909
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.