Show simple item record

Neuroimaging Pearls from the MDS Congress Video Challenge. Part 2: Acquired Disorders

dc.contributor.authorFearon, Conor
dc.contributor.authorRawal, Sapna
dc.contributor.authorOlszewska, Diana
dc.contributor.authorAlcaide-Leon, Paula
dc.contributor.authorKern, Drew S.
dc.contributor.authorSharma, Soumya
dc.contributor.authorJaiswal, Shyam K.
dc.contributor.authorMurthy, Jagarlapudi M.K.
dc.contributor.authorHa, Ainhi D.
dc.contributor.authorSchwartz, Raymond S.
dc.contributor.authorFung, Victor S.C.
dc.contributor.authorSpears, Chauncey
dc.contributor.authorTholanikunnel, Tracy
dc.contributor.authorAlmeida, Leonardo
dc.contributor.authorHatano, Taku
dc.contributor.authorOji, Yutaka
dc.contributor.authorHattori, Nobutaka
dc.contributor.authorShubham, Shantanu
dc.contributor.authorKumar, Hrishikesh
dc.contributor.authorBhidayasiri, Roongroj
dc.contributor.authorLaohathai, Christopher
dc.contributor.authorLang, Anthony E.
dc.date.accessioned2022-04-08T18:01:53Z
dc.date.available2023-05-08 14:01:50en
dc.date.available2022-04-08T18:01:53Z
dc.date.issued2022-04
dc.identifier.citationFearon, Conor; Rawal, Sapna; Olszewska, Diana; Alcaide-Leon, Paula ; Kern, Drew S.; Sharma, Soumya; Jaiswal, Shyam K.; Murthy, Jagarlapudi M.K.; Ha, Ainhi D.; Schwartz, Raymond S.; Fung, Victor S.C.; Spears, Chauncey; Tholanikunnel, Tracy; Almeida, Leonardo; Hatano, Taku; Oji, Yutaka; Hattori, Nobutaka; Shubham, Shantanu; Kumar, Hrishikesh; Bhidayasiri, Roongroj; Laohathai, Christopher; Lang, Anthony E. (2022). "Neuroimaging Pearls from the MDS Congress Video Challenge. Part 2: Acquired Disorders." Movement Disorders Clinical Practice 9(3): 311-325.
dc.identifier.issn2330-1619
dc.identifier.issn2330-1619
dc.identifier.urihttps://hdl.handle.net/2027.42/171975
dc.description.abstractThe MDS Video Challenge continues to be the one of most widely attended sessions at the International Congress. Although the primary focus of this event is the presentation of complex and challenging cases through videos, a number of cases over the years have also presented an unusual or important neuroimaging finding related to the case. We reviewed the previous Video Challenge cases and present here a selection of those cases which incorporated such imaging findings. We have compiled these “imaging pearls” into two anthologies. The first focuses on pearls where the underlying diagnosis was a genetic condition. This second anthology focuses on imaging pearls in cases where the underlying condition was acquired. For each case we present brief clinical details along with neuroimaging findings, the characteristic imaging findings of that disorder and, finally, the differential diagnosis for the imaging findings seen.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othertoluene abuse
dc.subject.otherGAD65-associated disease
dc.subject.otherSjogren syndrome
dc.subject.otherdural arteriovenous fistula
dc.subject.otherintracranial hypotension
dc.subject.otherdiffuse large B cell lymphoma
dc.subject.othergnathostomiasis
dc.subject.otherMRI
dc.titleNeuroimaging Pearls from the MDS Congress Video Challenge. Part 2: Acquired Disorders
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171975/1/mdc313415_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171975/2/mdc313415.pdf
dc.identifier.doi10.1002/mdc3.13415
dc.identifier.sourceMovement Disorders Clinical Practice
dc.identifier.citedreferenceVideo Tournament. A case of progressive gait imbalance. Presented at: June 4, 2021; 7th Asian and Oceanian Parkinson’s Disease and Movement Disorders Congress.
dc.identifier.citedreferenceGaig C, Graus F, Compta Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017; 88 ( 18 ): 1736 – 1743. https://doi.org/10.1212/WNL.0000000000003887.
dc.identifier.citedreferenceSharma P, Garg RK, Somvanshi DS, Malhotra HS. Progressive supranuclear palsy like syndrome: neurocysticercosis an unusual cause. Neurol India 2011; 59 ( 3 ): 484 – 485. https://doi.org/10.4103/0028-3886.82763.
dc.identifier.citedreferenceFilley CM, Halliday W, Kleinschmidt-DeMasters BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol 2004; 63 ( 1 ): 1 – 12. https://doi.org/10.1093/jnen/63.1.1.
dc.identifier.citedreferenceAydin K, Sencer S, Demir T, Ogel K, Tunaci A, Minareci O. Cranial MR findings in chronic toluene abuse by inhalation. AJNR Am J Neuroradiol 2002; 23 ( 7 ): 1173 – 1179.
dc.identifier.citedreferenceKobayashi M. Marked asymmetry of white matter lesions caused by chronic toluene exposure. Neurol Sci 2014; 35 ( 3 ): 495 – 497. https://doi.org/10.1007/s10072-013-1581-8.
dc.identifier.citedreferenceLin CM, Liu CK. Reversible cerebral periventricular white matter changes with corpus callosum involvement in acute toluene-poisoning. J Neuroimaging 2015; 25 ( 3 ): 497 – 500. https://doi.org/10.1111/jon.12155.
dc.identifier.citedreferenceRamcharan K, Ramesar A, Ramdath M, Teelucksingh J, Gosein M. Encephalopathy and neuropathy due to glue, paint thinner, and gasoline sniffing in Trinidad and Tobago-MRI findings. Case Rep Neurol Med 2014; 2014: 850109. https://doi.org/10.1155/2014/850109.
dc.identifier.citedreferenceIkeda M, Tsukagoshi H. Encephalopathy due to toluene sniffing. Report of a case with magnetic resonance imaging. Eur Neurol 1990; 30 ( 6 ): 347 – 349. https://doi.org/10.1159/000117371.
dc.identifier.citedreferenceHirai H, Ikeuchi Y. MRI of chronic toluene intoxication. Rinsho Shinkeigaku 1993; 33 ( 5 ): 552 – 555.
dc.identifier.citedreferenceTerashi H, Nagata K, Satoh Y, Hirata Y, Hatazawa J. Hippocampal hypoperfusion underlying dementia due to chronic toluene intoxication. Rinsho Shinkeigaku 1997; 37 ( 11 ): 1010 – 1013.
dc.identifier.citedreferenceSakai T, Honda S, Kuzuhara S. Encephalomyelopathy demonstrated on MRI in a case of chronic toluene intoxication. Rinsho Shinkeigaku 2000; 40 ( 6 ): 571 – 575.
dc.identifier.citedreferenceKojima S, Hirayama K, Furumoto H, Fukutake T, Hattori T. Magnetic resonance imaging in chronic toluene abuse, and volitional hyperkinesia. Rinsho Shinkeigaku 1993; 33 ( 5 ): 477 – 482.
dc.identifier.citedreferenceMarey-López J, Rubio-Nazabal E, Alonso-Magdalena L, López-Facal S. Cerebral infarction after toluene inhalation. Cerebrovasc Dis 2003; 16 ( 1 ): 107 – 108. https://doi.org/10.1159/000070128.
dc.identifier.citedreferenceRyu YH, Lee JD, Yoon PH, Jeon P, Kim DI, Shin DW. Cerebral perfusion impairment in a patient with toluene abuse. J Nucl Med 1998; 39 ( 4 ): 632 – 633.
dc.identifier.citedreferenceCaldemeyer KS, Armstrong SW, George KK, Moran CC, Pascuzzi RM. The spectrum of neuroimaging abnormalities in solvent abuse and their clinical correlation. J Neuroimaging 1996; 6 ( 3 ): 167 – 173. https://doi.org/10.1111/jon199663167.
dc.identifier.citedreferenceKamran S, Bakshi R. MRI in chronic toluene abuse: low signal in the cerebral cortex on T2-weighted images. Neuroradiology 1998; 40 ( 8 ): 519 – 521. https://doi.org/10.1007/s002340050637.
dc.identifier.citedreferenceSodeyama N, Orimo S, Okiyama R, Arai M, Tamaki M. A case of chronic thinner intoxication developing hyperkinésie volitionnelle three years after stopping thinner abuse. Rinsho Shinkeigaku 1993; 33 ( 2 ): 213 – 215.
dc.identifier.citedreferenceSuzuki Y, Oishi M, Ogawa K, Kamei S. A patient with Marchiafava-Bignami disease as a complication of diabetes mellitus treated effectively with corticosteroid. J Clin Neurosci 2012; 19 ( 5 ): 761 – 762. https://doi.org/10.1016/j.jocn.2011.07.040.
dc.identifier.citedreferenceAutti T, Joensuu R, Aberg L. Decreased T2 signal in the thalami may be a sign of lysosomal storage disease. Neuroradiology 2007; 49 ( 7 ): 571 – 578. https://doi.org/10.1007/s00234-007-0220-6.
dc.identifier.citedreferenceMartin A, Sevin C, Lazarus C, Bellesme C, Aubourg P, Adamsbaum C. Toward a better understanding of brain lesions during metachromatic leukodystrophy evolution. AJNR Am J Neuroradiol 2012; 33 ( 9 ): 1731 – 1739. https://doi.org/10.3174/ajnr.A3038.
dc.identifier.citedreferenceDrayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. MRI of brain iron. AJR Am J Roentgenol 1986; 147 ( 1 ): 103 – 110. https://doi.org/10.2214/ajr.147.1.103.
dc.identifier.citedreferenceStern MB, Braffman BH, Skolnick BE, Hurtig HI, Grossman RI. Magnetic resonance imaging in Parkinson’s disease and parkinsonian syndromes. Neurology 1989; 39 ( 11 ): 1524 – 1526. https://doi.org/10.1212/wnl.39.11.1524.
dc.identifier.citedreferenceChen JC, Hardy PA, Kucharczyk W, et al. MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR Am J Neuroradiol 1993; 14 ( 2 ): 275 – 281.
dc.identifier.citedreferenceRusso C, Smoker WR, Kubal W. Cortical and subcortical T2 shortening in multiple sclerosis. AJNR Am J Neuroradiol 1997; 18 ( 1 ): 124 – 126.
dc.identifier.citedreferenceSavoiardo M, Halliday WC, Nardocci N, et al. Hallervorden-Spatz disease: MR and pathologic findings. AJNR Am J Neuroradiol 1993; 14 ( 1 ): 155 – 162.
dc.identifier.citedreferenceAlbayram S, Ozer H, Gokdemir S, Gulsen F, Kiziltan G, Kocer N, Islak C. Reversible reduction of apparent diffusion coefficient values in bilateral internal capsules in transient hypoglycemia-induced hemiparesis. AJNR Am J Neuroradiol 2006; 27 ( 8 ): 1760 – 1762.
dc.identifier.citedreferenceNakajima N, Ueda M, Nagayama H, Katayama Y. Hypoglycemia-induced spontaneous unilateral jerking movement in bilateral internal capsule posterior limb abnormalities. J Neurol Sci 2014; 338 ( 1–2 ): 220 – 222. https://doi.org/10.1016/j.jns.2013.12.041.
dc.identifier.citedreferenceCousyn L, Law-Ye B, Pyatigorskaya N, et al. Brain MRI features and scoring of leukodystrophy in adult-onset Krabbe disease. Neurology 2019; 93 ( 7 ): e647 – e652. https://doi.org/10.1212/WNL.0000000000007943.
dc.identifier.citedreferenceJin J, Hu F, Zhang Q, Jia R, Dang J. Hyperintensity of the corticospinal tract on FLAIR: a simple and sensitive objective upper motor neuron degeneration marker in clinically verified amyotrophic lateral sclerosis. J Neurol Sci 2016; 367: 177 – 183. https://doi.org/10.1016/j.jns.2016.06.005.
dc.identifier.citedreferenceBiswas A, Krishnan P, Amirabadi A, Blaser S, Mercimek-Andrews S, Shroff M. Expanding the neuroimaging phenotype of neuronal ceroid Lipofuscinoses. AJNR Am J Neuroradiol 2020; 41 ( 10 ): 1930 – 1936. https://doi.org/10.3174/ajnr.A6726.
dc.identifier.citedreferenceKriegstein AR, Shungu DC, Millar WS, et al. Leukoencephalopathy and raised brain lactate from heroin vapor inhalation (“chasing the dragon”). Neurology 1999; 53 ( 8 ): 1765 – 1773. https://doi.org/10.1212/wnl.53.8.1765.
dc.identifier.citedreferenceProtogerou G, Ralli S, Tsougos I, Patramani I, Hadjigeorgiou G, Fezoulidis I, Kapsalaki EZ. T2 FLAIR increased signal intensity at the posterior limb of the internal capsule: clinical significance in ALS patients. Neuroradiol J 2011; 24 ( 2 ): 226 – 234. https://doi.org/10.1177/197140091102400210.
dc.identifier.citedreferenceHerman JS, Chiodini PL. Gnathostomiasis, another emerging imported disease. Clin Microbiol Rev 2009; 22 ( 3 ): 484 – 492. https://doi.org/10.1128/CMR.00003-09.
dc.identifier.citedreferenceSawanyawisuth K, Tiamkao S, Kanpittaya J, Dekumyoy P, Jitpimolmard S. MR imaging findings in cerebrospinal gnathostomiasis. AJNR Am J Neuroradiol 2004; 25 ( 3 ): 446 – 449.
dc.identifier.citedreferenceKanpittaya J, Sawanyawisuth K, Intapan PM, Khotsri P, Chotmongkol V, Maleewong W. A comparative study of neuroimaging features between human neuro-gnathostomiasis and angiostrongyliasis. Neurol Sci 2012; 33 ( 4 ): 893 – 898. https://doi.org/10.1007/s10072-011-0864-1.
dc.identifier.citedreferenceSawanyawisuth K, Tiamkao S, Nitinavakarn B, Dekumyoy P, Jitpimolmard S. MR imaging findings in cauda equina gnathostomiasis. AJNR Am J Neuroradiol 2005; 26 ( 1 ): 39 – 42.
dc.identifier.citedreferenceGuillain G. Deux cas de myoclonies synchrones et rythmées vélo-pharyngo-laryngo-oculo-diaphragmatiques. Le problème anatomique et physio-pathologique de ce syndrome. Masson; 1932.
dc.identifier.citedreferenceTilikete C, Desestret V. Hypertrophic olivary degeneration and palatal or oculopalatal tremor. Front Neurol 2017; 8: 302. https://doi.org/10.3389/fneur.2017.00302.
dc.identifier.citedreferenceGoyal M, Versnick E, Tuite P, et al. Hypertrophic olivary degeneration: Metaanalysis of the temporal evolution of MR findings. AJNR Am J Neuroradiol 2000; 21 ( 6 ): 1073 – 1077.
dc.identifier.citedreferenceSamuel M, Torun N, Tuite PJ, Sharpe JA, Lang AE. Progressive ataxia and palatal tremor (PAPT): clinical and MRI assessment with review of palatal tremors. Brain 2004; 127 ( Pt 6 ): 1252 – 1268. https://doi.org/10.1093/brain/awh137.
dc.identifier.citedreferenceWeller PF. Eosinophilic meningitis. Am J Med 1993; 95 ( 3 ): 250 – 253. https://doi.org/10.1016/0002-9343(93)90275-t.
dc.identifier.citedreferenceKanpittaya J, Jitpimolmard S, Tiamkao S, Mairiang E. MR findings of eosinophilic meningoencephalitis attributed to Angiostrongylus cantonensis. AJNR Am J Neuroradiol 2000; 21 ( 6 ): 1090 – 1094.
dc.identifier.citedreferenceRowley HA, Uht RM, Kazacos KR, Sakanari J, Wheaton WV, Barkovich AJ, Bollen AW. Radiologic-pathologic findings in raccoon roundworm (Baylisascaris procyonis) encephalitis. AJNR Am J Neuroradiol 2000; 21 ( 2 ): 415 – 420.
dc.identifier.citedreferenceSánchez SS, García HH, Nicoletti A. Clinical and magnetic resonance imaging findings of Neurotoxocariasis. Front Neurol 2018; 9: 53. https://doi.org/10.3389/fneur.2018.00053.
dc.identifier.citedreferenceMalter MP, Helmstaedter C, Urbach H, Vincent A, Bien CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010; 67 ( 4 ): 470 – 478. https://doi.org/10.1002/ana.21917.
dc.identifier.citedreferenceGuardado Santervás PL, Arjona Padillo A, Serrano Castro P, et al. Stiff person syndrome (SPS), a basal ganglia disease? Striatal MRI lesions in a patient with SPS. J Neurol Neurosurg Psychiatry 2007; 78 ( 6 ): 657 – 659. https://doi.org/10.1136/jnnp.2006.099705.
dc.identifier.citedreferenceFredriksen JR, Carr CM, Koeller KK, Verdoorn JT, Gadoth A, Pittock SJ, Kotsenas AL. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy. Neuroradiology 2018; 60 ( 3 ): 239 – 245. https://doi.org/10.1007/s00234-018-1976-6.
dc.identifier.citedreferenceGalli JR, Austin SD, Greenlee JE, Clardy SL. Stiff person syndrome with anti-GAD65 antibodies within the national veterans affairs health administration. Muscle Nerve 2018; 58 ( 6 ): 801 – 804. https://doi.org/10.1002/mus.26338.
dc.identifier.citedreferenceGordon CR, Zivotofsky AZ, Siman-Tov T, Gadoth N. Stiff person syndrome with cerebellar disease and high-titer anti-GAD antibodies. Neurology 2007; 68 ( 14 ): 1161; author reply 1161. https://doi.org/10.1212/01.wnl.0000261162.61360.a2.
dc.identifier.citedreferenceHonnorat J, Saiz A, Giometto B, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol 2001; 58 ( 2 ): 225 – 230.
dc.identifier.citedreferenceBaizabal-Carvallo JF. The neurological syndromes associated with glutamic acid decarboxylase antibodies. J Autoimmun 2019; 101: 35 – 47. https://doi.org/10.1016/j.jaut.2019.04.007.
dc.identifier.citedreferenceHsu YT, Duann JR, Lu MK, Sun MC, Tsai CH. Polyglandular autoimmune syndrome type 4 with GAD antibody and dystonia. Clin Neurol Neurosurg 2012; 114 ( 7 ): 1024 – 1026. https://doi.org/10.1016/j.clineuro.2012.01.051.
dc.identifier.citedreferenceSunwoo JS, Chu K, Byun JI, et al. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders. J Neuroimmunol 2016; 290: 15 – 21. https://doi.org/10.1016/j.jneuroim.2015.11.012.
dc.identifier.citedreferencePittock SJ, Yoshikawa H, Ahlskog JE, Tisch SH, Benarroch EE, Kryzer TJ, Lennon VA. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc 2006; 81 ( 9 ): 1207 – 1214. https://doi.org/10.4065/81.9.1207.
dc.identifier.citedreferenceJhaveri MD, Salzman KL, Ross JS, Moore KR, Osborn AG, Ho CY. Cerebellar atrophy. Expertddx: Brain and Spine. Second ed. ). ExpertDDx Amsterdam: Elsevier; 2018: 522 – 525. https://doi.org/10.1016/B978-0-323-44308-1.50078-7.
dc.identifier.citedreferenceWijburg MT, van Oosten BW, Murk JL, Karimi O, Killestein J, Wattjes MP. Heterogeneous imaging characteristics of JC virus granule cell neuronopathy (GCN): a case series and review of the literature. J Neurol 2015; 262 ( 1 ): 65 – 73. https://doi.org/10.1007/s00415-014-7530-5.
dc.identifier.citedreferenceMekinian A, Tennenbaum J, Lahuna C, et al. Primary Sjögren’s syndrome: central and peripheral nervous system involvements. Clin Exp Rheumatol 2020; 38 Suppl 126 ( 4 ): 103 – 109.
dc.identifier.citedreferenceYerdelen D, Karataş M, Alkan O, Tufan M. A new kind of and reversible brainstem involvement in primary Sjögren’s syndrome as an initial manifestation. Int J Neurosci 2010; 120 ( 2 ): 155 – 158. https://doi.org/10.3109/00207450903359683.
dc.identifier.citedreferenceNiu B, Zou Z, Shen Y, Cao B. A case report of Sjögren syndrome manifesting bilateral basal ganglia lesions. Medicine (Baltimore) 2017; 96 ( 17 ): e6715. https://doi.org/10.1097/MD.0000000000006715.
dc.identifier.citedreferenceButryn M, Neumann J, Rolfes L, et al. Clinical, radiological, and laboratory features of spinal cord involvement in primary Sjögren’s syndrome. J Clin Med 2020; 9 ( 5 ): E1482. https://doi.org/10.3390/jcm9051482.
dc.identifier.citedreferenceSakai K, Hamaguchi T, Yamada M. Multiple cranial nerve enhancement on MRI in primary Sjögren’s syndrome. Intern Med 2010; 49 ( 9 ): 857 – 859. https://doi.org/10.2169/internalmedicine.49.3236.
dc.identifier.citedreferenceVerma R, Anand R. Limbic encephalitis as a heralding manifestation of primary Sjogren’s syndrome. J Neurosci Rural Pract 2020; 11 ( 4 ): 658 – 660. https://doi.org/10.1055/s-0040-1715997.
dc.identifier.citedreferenceArarat K, Berrios I, Hannoun A, Ionete C. Case of primary Sjogren’s syndrome preceded by dystonia. BMJ Case Rep 2018; 2018: bcr-2017-223468. https://doi.org/10.1136/bcr-2017-223468.
dc.identifier.citedreferenceCréange A, Sedel F, Brugières P, Voisin MC, Degos JD. Primary Sjögren’s syndrome presenting as progressive parkinsonian syndrome. Mov Disord 1997; 12 ( 1 ): 121 – 123. https://doi.org/10.1002/mds.870120124.
dc.identifier.citedreferenceKadota Y, Tokumaru AM, Kamakura K, Kohyama S, Okizuka H, Kaji T, Kusano S. Primary Sjögren’s syndrome initially manifested by optic neuritis: MRI findings. Neuroradiology 2002; 44 ( 4 ): 338 – 341. https://doi.org/10.1007/s00234-001-0730-6.
dc.identifier.citedreferenceRabadi MH, Kundi S, Brett D, Padmanabhan R. Neurological pictures. Primary Sjögren syndrome presenting as neuromyelitis optica. J Neurol Neurosurg Psychiatry 2010; 81 ( 2 ): 213 – 214. https://doi.org/10.1136/jnnp.2009.183913.
dc.identifier.citedreferenceWang GQ, Zhang WW. Spontaneous intracranial hemorrhage as an initial manifestation of primary Sjögren’s syndrome: a case report. BMC Neurol 2013; 13: 100. https://doi.org/10.1186/1471-2377-13-100.
dc.identifier.citedreferenceRossi R, Valeria SM. Subacute aseptic meningitis as neurological manifestation of primary Sjögren’s syndrome. Clin Neurol Neurosurg 2006; 108 ( 7 ): 688 – 691. https://doi.org/10.1016/j.clineuro.2005.05.015.
dc.identifier.citedreferenceVerma R, Lalla R, Patil TB, Mehta V. Acute myeloneuropathy: An uncommon presentation of Sjögren’s syndrome. Ann Indian Acad Neurol 2013; 16 ( 4 ): 696 – 698. https://doi.org/10.4103/0972-2327.120462.
dc.identifier.citedreferenceSanahuja J, Ordoñez-Palau S, Begué R, Brieva L, Boquet D. Primary Sjögren syndrome with tumefactive central nervous system involvement. AJNR Am J Neuroradiol 2008; 29 ( 10 ): 1878 – 1879. https://doi.org/10.3174/ajnr.A1204.
dc.identifier.citedreferenceTrebst C, Raab P, Voss EV, Rommer P, Abu-Mugheisib M, Zettl UK, Stangel M. Longitudinal extensive transverse myelitis—it’s not all neuromyelitis optica. Nat Rev Neurol 2011; 7 ( 12 ): 688 – 698. https://doi.org/10.1038/nrneurol.2011.176.
dc.identifier.citedreferenceStanifer JW, George R, Keenan RT, Massey EW. What started this? Debilitating longitudinally-extensive myelitis. Am J Med 2012; 125 ( 11 ): 1071 – 1073. https://doi.org/10.1016/j.amjmed.2012.07.010.
dc.identifier.citedreferenceFumery T, Baudar C, Ossemann M, London F. Longitudinally extensive transverse myelitis following acute COVID-19 infection. Mult Scler Relat Disord 2021; 48: 102723. https://doi.org/10.1016/j.msard.2020.102723.
dc.identifier.citedreferenceShahriari M, Sotirchos ES, Newsome SD, Yousem DM. MOGAD: how it differs from and resembles other neuroinflammatory disorders. AJR Am J Roentgenol 2021; 216 ( 4 ): 1031 – 1039. https://doi.org/10.2214/AJR.20.24061.
dc.identifier.citedreferenceGopinath M, Nagesh C, Santhosh K, Jayadevan ER. Dementia and parkinsonism-a rare presentation of intracranial dural arteriovenous fistulae. Neurointervention 2017; 12 ( 2 ): 125 – 129. https://doi.org/10.5469/neuroint.2017.12.2.125.
dc.identifier.citedreferenceKwon BJ, Han MH, Kang HS, Chang KH. MR imaging findings of intracranial dural arteriovenous fistulas: relations with venous drainage patterns. AJNR Am J Neuroradiol 2005; 26 ( 10 ): 2500 – 2507.
dc.identifier.citedreferencePu J, Si X, Ye R, Zhang B. Straight sinus dural arteriovenous fistula presenting with reversible parkinsonism: a case report and literature review. Medicine (Baltimore) 2017; 96 ( 49 ): e9005. https://doi.org/10.1097/MD.0000000000009005.
dc.identifier.citedreferenceChang CW, Hung HC, Tsai JI, Lee PC, Hung SC. Dural arteriovenous fistula with sinus thrombosis and venous reflux presenting as parkinsonism: a case report. Neurologist 2019; 24 ( 4 ): 132 – 135. https://doi.org/10.1097/NRL.0000000000000235.
dc.identifier.citedreferenceVelz J, Kulcsar Z, Büchele F, Richter H, Regli L. The challenging clinical Management of Patients with cranial dural arteriovenous fistula and secondary Parkinson’s syndrome: pathophysiology and treatment options. Cerebrovasc Dis Extra 2020; 10 ( 3 ): 124 – 138. https://doi.org/10.1159/000510597.
dc.identifier.citedreferenceLuo Y, Qi J, Cen Z, Hu H, Jiang B, Luo W. Two cases of dural arteriovenous fistula presenting with parkinsonism and progressive cognitive dysfunction. J Neurol Sci 2014; 343 ( 1–2 ): 211 – 214. https://doi.org/10.1016/j.jns.2014.05.059.
dc.identifier.citedreferenceLai J, Heran MKS, Stoessl AJ, Gooderham PA. Reversible parkinsonism and rapidly progressive dementia due to Dural arteriovenous fistula: case series and literature review. Mov Disord Clin Pract 2017; 4 ( 4 ): 607 – 611. https://doi.org/10.1002/mdc3.12480.
dc.identifier.citedreferenceEnofe I, Thacker I, Shamim S. Dural arteriovenous fistula as a treatable dementia. Proc (Bayl Univ Med Cent) 2017; 30 ( 2 ): 215 – 217. https://doi.org/10.1080/08998280.2017.11929592.
dc.identifier.citedreferenceNogueira RG, Baccin CE, Rabinov JD, Pryor JC, Buonanno FS, Hirsch JA. Reversible parkinsonism after treatment of dural arteriovenous fistula. J Neuroimaging 2009; 19 ( 2 ): 183 – 184. https://doi.org/10.1111/j.1552-6569.2007.00237.x.
dc.identifier.citedreferenceMiura S, Noda K, Shiramizu N, et al. Parkinsonism and ataxia associated with an intracranial dural arteriovenous fistula presenting with hyperintense basal ganglia in T1-weighted MRI. J Clin Neurosci 2009; 16 ( 2 ): 341 – 343. https://doi.org/10.1016/j.jocn.2008.01.004.
dc.identifier.citedreferenceNakahara Y, Ogata A, Takase Y, Maeda K, Okamoto H, Matsushima T, Sakata S. Treatment of dural arteriovenous fistula presenting as typical symptoms of hydrocephalus caused by venous congestion: case report. Neurol Med Chir (Tokyo) 2011; 51 ( 3 ): 229 – 232. https://doi.org/10.2176/nmc.51.229.
dc.identifier.citedreferenceFujii T, Yamadori A, Endo K, Suzuki K, Fukatsu R. Disproportionate retrograde amnesia in a patient with herpes simplex encephalitis. Cortex 1999; 35 ( 5 ): 599 – 614.
dc.identifier.citedreferenceOsborn AG. Vascular Malformations. Osborn’s Brain. 2nd ed. Amsterdam: Elsevier; 2018.
dc.identifier.citedreferenceZyck S, De Jesus O, Gould GC. Dural Arteriovenous Fistula. Treasure Island (FL): StatPearls. StatPearls Publishing; 2021 Accessed July 12, 2021. http://www.ncbi.nlm.nih.gov/books/NBK532274/.
dc.identifier.citedreferenceIkeda K, Iwasaki Y, Osako M, Ichikawa Y, Kinoshita M. Dural arteriovenous fistula mimicking leukoencephalopathy. Neurology 2000; 54 ( 5 ): 1123. https://doi.org/10.1212/wnl.54.5.1123.
dc.identifier.citedreferenceSchievink WI, Tourje J. Intracranial hypotension without meningeal enhancement on magnetic resonance imaging. Case report. J Neurosurg 2000; 92 ( 3 ): 475 – 477. https://doi.org/10.3171/jns.2000.92.3.0475.
dc.identifier.citedreferenceFuh JL, Wang SJ, Lai TH, Hseu SS. The timing of MRI determines the presence or absence of diffuse pachymeningeal enhancement in patients with spontaneous intracranial hypotension. Cephalalgia 2008; 28 ( 4 ): 318 – 322. https://doi.org/10.1111/j.1468-2982.2007.01498.x.
dc.identifier.citedreferenceMokri B. Cerebrospinal fluid volume depletion and its emerging clinical/imaging syndromes. Neurosurg Focus 2000; 9 ( 1 ): e6. https://doi.org/10.3171/foc.2000.9.1.6.
dc.identifier.citedreferenceMichali-Stolarska M, Bladowska J, Stolarski M, Sąsiadek MJ. Diagnostic imaging and clinical features of intracranial hypotension—review of literature. Pol J Radiol 2017; 82: 842 – 849. https://doi.org/10.12659/PJR.904433.
dc.identifier.citedreferenceWatanabe A, Horikoshi T, Uchida M, Koizumi H, Yamazaki H, Kinouchi H. Subdural effusions in the posterior fossa associated with spontaneous intracranial hypotension. Can J Neurol Sci 2006; 33 ( 2 ): 205 – 208. https://doi.org/10.1017/s0317167100004984.
dc.identifier.citedreferenceZwicker J, Lum C. A treatable mimic of Chiari malformation with syringomyelia. Can J Neurol Sci 2009; 36 ( 4 ): 480 – 482. https://doi.org/10.1017/s0317167100007824.
dc.identifier.citedreferenceMokri B, Ahlskog JE, Luetmer PH. Chorea as a manifestation of spontaneous CSF leak. Neurology 2006; 67 ( 8 ): 1490 – 1491. https://doi.org/10.1212/01.wnl.0000240059.96502.bf.
dc.identifier.citedreferenceMokri B. Movement disorders associated with spontaneous CSF leaks: a case series. Cephalalgia 2014; 34 ( 14 ): 1134 – 1141. https://doi.org/10.1177/0333102414531154.
dc.identifier.citedreferenceWang DJ, Pandey SK, Lee DH, Sharma M. The interpeduncular angle: a practical and objective marker for the detection and diagnosis of intracranial hypotension on brain MRI. AJNR Am J Neuroradiol 2019; 40 ( 8 ): 1299 – 1303. https://doi.org/10.3174/ajnr.A6120.
dc.identifier.citedreferenceFigueroa EL, Jog MS, Pelz DM, Lownie SP. Spontaneous intracranial hypotension as a cause of exacerbation in Huntington’s disease. Can J Neurol Sci 2018; 45 ( 3 ): 357 – 359. https://doi.org/10.1017/cjn.2017.296.
dc.identifier.citedreferenceMartineau P, Chakraborty S, Faiz K, Shankar J. Imaging of the spontaneous low cerebrospinal fluid pressure headache: a review. Can Assoc Radiol J 2020; 71 ( 2 ): 174 – 185. https://doi.org/10.1177/0846537119888395.
dc.identifier.citedreferenceDobrocky T, Grunder L, Breiding PS, et al. Assessing spinal cerebrospinal fluid leaks in spontaneous intracranial hypotension with a scoring system based on brain magnetic resonance imaging findings. JAMA Neurol 2019; 76 ( 5 ): 580 – 587. https://doi.org/10.1001/jamaneurol.2018.4921.
dc.identifier.citedreferenceD’Antona L, Jaime Merchan MA, Vassiliou A, Watkins LD, Davagnanam I, Toma AK, Matharu MS. Clinical presentation, investigation findings, and treatment outcomes of spontaneous intracranial hypotension syndrome: a systematic review and meta-analysis. JAMA Neurol 2021; 78 ( 3 ): 329 – 337. https://doi.org/10.1001/jamaneurol.2020.4799.
dc.identifier.citedreferenceUrbach H, Fung C, Dovi-Akue P, Lützen N, Beck J. Spontaneous intracranial hypotension. Dtsch Arztebl Int 2020; 117 ( 27–28 ): 480 – 487. https://doi.org/10.3238/arztebl.2020.0480.
dc.identifier.citedreferenceAmrhein TJ, Kranz PG. Spontaneous intracranial hypotension: imaging in diagnosis and treatment. Radiol Clin North Am 2019; 57 ( 2 ): 439 – 451. https://doi.org/10.1016/j.rcl.2018.10.004.
dc.identifier.citedreferenceAlcaide-Leon P, López-Rueda A, Coblentz A, Kucharczyk W, Bharatha A, de Tilly LN. Prominent inferior Intercavernous sinus on sagittal T1-weighted images: a sign of intracranial hypotension. AJR Am J Roentgenol 2016; 206 ( 4 ): 817 – 822. https://doi.org/10.2214/AJR.15.14872.
dc.identifier.citedreferenceKranz PG, Gray L, Malinzak MD, Amrhein TJ. Spontaneous intracranial hypotension: pathogenesis, diagnosis, and treatment. Neuroimaging Clin N Am 2019; 29 ( 4 ): 581 – 594. https://doi.org/10.1016/j.nic.2019.07.006.
dc.identifier.citedreferenceAntony J, Hacking C, Jeffree RL. Pachymeningeal enhancement-a comprehensive review of literature. Neurosurg Rev 2015; 38 ( 4 ): 649 – 659. https://doi.org/10.1007/s10143-015-0646-y.
dc.identifier.citedreferenceHatano T, Kubo SI, Hattori N, Mizuno Y. Movement disorders in neoplastic brain disease. Movement Disorders in Neurologic and Systemic Disease. Cambridge, UK: Cambridge University Press; 2014: 279 – 299.
dc.identifier.citedreferenceBroski SM, Hunt CH, Johnson GB, Morreale RF, Lowe VJ, Peller PJ. Structural and functional imaging in parkinsonian syndromes. Radiographics 2014; 34 ( 5 ): 1273 – 1292. https://doi.org/10.1148/rg.345140009.
dc.identifier.citedreferenceKato N, Arai K, Hattori T. Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci 2003; 210 ( 1–2 ): 57 – 60. https://doi.org/10.1016/s0022-510x(03)00014-5.
dc.identifier.citedreferenceOba H, Yagishita A, Terada H, et al. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 2005; 64 ( 12 ): 2050 – 2055. https://doi.org/10.1212/01.WNL.0000165960.04422.D0.
dc.identifier.citedreferenceAdachi M, Kawanami T, Ohshima H, Sugai Y, Hosoya T. Morning glory sign: a particular MR finding in progressive supranuclear palsy. Magn Reson Med Sci 2004; 3 ( 3 ): 125 – 132. https://doi.org/10.2463/mrms.3.125.
dc.identifier.citedreferenceTsuboi Y, Slowinski J, Josephs KA, Honer WG, Wszolek ZK, Dickson DW. Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 2003; 60 ( 11 ): 1766 – 1769. https://doi.org/10.1212/01.wnl.0000068011.21396.f4.
dc.identifier.citedreferenceHöglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 2017; 32 ( 6 ): 853 – 864. https://doi.org/10.1002/mds.26987.
dc.identifier.citedreferenceVillano JL, Propp JM, Porter KR, et al. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries. Neuro Oncol 2008; 10 ( 2 ): 121 – 130. https://doi.org/10.1215/15228517-2007-054.
dc.identifier.citedreferenceAl-Hussaini M, Sultan I, Abuirmileh N, Jaradat I, Qaddoumi I. Pineal gland tumors: experience from the SEER database. J Neurooncol 2009; 94 ( 3 ): 351 – 358. https://doi.org/10.1007/s11060-009-9881-9.
dc.identifier.citedreferenceAverbuch-Heller L, Paulson GW, Daroff RB, Leigh RJ. Whipple’s disease mimicking progressive supranuclear palsy: the diagnostic value of eye movement recording. J Neurol Neurosurg Psychiatry 1999; 66 ( 4 ): 532 – 535. https://doi.org/10.1136/jnnp.66.4.532.
dc.identifier.citedreferenceSharma OP, Sharma AM. Sarcoidosis of the nervous system. A clinical approach. Arch Intern Med 1991; 151 ( 7 ): 1317 – 1321.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.