Show simple item record

Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment

dc.contributor.authorO’Brien, T. A.
dc.contributor.authorWehner, M. F.
dc.contributor.authorPayne, A. E.
dc.contributor.authorShields, C. A.
dc.contributor.authorRutz, J. J.
dc.contributor.authorLeung, L.-R.
dc.contributor.authorRalph, F. M.
dc.contributor.authorCollow, A.
dc.contributor.authorGorodetskaya, I.
dc.contributor.authorGuan, B.
dc.contributor.authorLora, J. M.
dc.contributor.authorMcClenny, E.
dc.contributor.authorNardi, K. M.
dc.contributor.authorRamos, A. M.
dc.contributor.authorTomé, R.
dc.contributor.authorSarangi, C.
dc.contributor.authorShearer, E. J.
dc.contributor.authorUllrich, P. A.
dc.contributor.authorZarzycki, C.
dc.contributor.authorLoring, B.
dc.contributor.authorHuang, H.
dc.contributor.authorInda-Díaz, H. A.
dc.contributor.authorRhoades, A. M.
dc.contributor.authorZhou, Y.
dc.date.accessioned2022-04-08T18:02:50Z
dc.date.available2023-04-08 14:02:41en
dc.date.available2022-04-08T18:02:50Z
dc.date.issued2022-03-27
dc.identifier.citationO’Brien, T. A. ; Wehner, M. F.; Payne, A. E.; Shields, C. A.; Rutz, J. J.; Leung, L.-R. ; Ralph, F. M.; Collow, A.; Gorodetskaya, I.; Guan, B.; Lora, J. M.; McClenny, E.; Nardi, K. M.; Ramos, A. M.; Tomé, R. ; Sarangi, C.; Shearer, E. J.; Ullrich, P. A.; Zarzycki, C.; Loring, B.; Huang, H.; Inda-Díaz, H. A. ; Rhoades, A. M.; Zhou, Y. (2022). "Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment." Journal of Geophysical Research: Atmospheres 127(6): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/171990
dc.description.abstractThe Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi- model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA- 2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.Plain Language SummaryAtmospheric rivers (ARs) are a type of weather pattern known to be important for moving water from the warm, moist tropics to the cool, dry polar regions; when they reach midlatitudes in the winter time, they are commonly associated with heavy precipitation. Recent studies that assess the impacts of global climate change on ARs tend to agree that there will be more ARs in a warmer climate, and that ARs will tend to be more extreme. However, it has been increasingly recognized by the AR research community that these results may depend on the method used to identify ARs and the choice of climate model. This study reports results from a controlled experiment, involving an international research community, that aims to show how different AR identification methods and climate models might impact our scientific understanding of ARs in the future. Results show that there will likely be more ARs in the future, and that ARs will generally have a larger spatial footprint. This experiment also shows that uncertainty in these results are large, with the uncertainty from AR identification methods outweighing that of climate models. Future efforts to better understand the physics of ARs may help us reduce this uncertainty.Key PointsUncertainty associated with atmospheric river (AR) definition dominates model uncertainty for projections of Pacific and Atlantic landfalling ARsMost AR detection algorithms show an increase in AR frequency in future simulationsAR statistics in CMIP 5- and- 6 models compare remarkably well with reanalysis
dc.publisherWiley Periodicals, Inc.
dc.subject.otherclimate change
dc.subject.otherextreme precipitation
dc.subject.otheratmospheric river
dc.subject.otherCMIP
dc.subject.otherARTMIP
dc.titleIncreases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171990/1/2021JD036013-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171990/2/jgrd57542.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171990/3/jgrd57542_am.pdf
dc.identifier.doi10.1029/2021JD036013
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRamos, A. M., Tomé, R., Trigo, R. M., Liberato, M. L., & Pinto, J. G. ( 2016 ). Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophysical Research Letters, 43 ( 17 ), 9315 - 9323. https://doi.org/10.1002/2016GL070634
dc.identifier.citedreferencePolade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., & Pierce, D. W. ( 2017 ). Precipitation in a warming world: Assessing projected hydro- climate changes in California and other Mediterranean climate regions. Scientific Reports, 7 ( 1 ), 10783. https://doi.org/10.1038/s41598-017-11285-y
dc.identifier.citedreferencePrabhat, P., Kashinath, K., Mudigonda, M., Kim, S., Kapp- Schwoerer, L., Graubner, A., & Collins, W. ( 2021 ). ClimateNet: An expert- labelled open dataset and Deep Learning architecture for enabling high- precision analyses of extreme weather. Geoscientific Model Development, 14 ( 1 ), 107 - 124. http://doi.org/10.5194/gmd- 14- 107- 2021
dc.identifier.citedreferenceRalph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J., & Dettinger, M. D. ( 2013 ). Observed impacts of duration and seasonality of atmospheric- river landfalls on soil moisture and runoff in coastal northern California. Journal of Hydrometeorology, 14 ( 2 ), 443 - 459. https://doi.org/10.1175/JHM-D-12-076.1
dc.identifier.citedreferenceRalph, F. M., Dettinger, M., Lavers, D., Gorodetskaya, I. V., Martin, A., Viale, M., & Cordeira, J. ( 2017 ). Atmospheric rivers emerge as a global science and applications focus. Bulletin of the American Meteorological Society, 98 ( 9 ), 1969 - 1973. https://doi.org/10.1175/BAMS-D-16-0262.1
dc.identifier.citedreferenceRalph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., & Eylander, J. ( 2018 ). Defining - atmospheric river- : How the glossary of meteorology helped resolve a debate. Bulletin of the American Meteorological Society, 99 ( 4 ), 837 - 839. https://doi.org/10.1175/BAMS-D-17-0157.1
dc.identifier.citedreferenceRalph, F. M., Neiman, P. J., & Rotunno, R. ( 2005 ). Dropsonde observations in low- level jets over the northeastern Pacific Ocean from CALJET- 1998 and PACJET- 2001: Mean vertical- profile and atmospheric- river characteristics. Monthly Weather Review, 133 ( 4 ), 889 - 910. https://doi.org/10.1175/MWR2896.1
dc.identifier.citedreferenceRalph, F. M., Neiman, P. J., & Wick, G. A. ( 2004 ). Satellite and CALJET aircraft observations of atmospheric rivers over the Eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 132 ( 7 ), 1721 - 1745. https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
dc.identifier.citedreferenceRalph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M., Reynolds, D., & Smallcomb, C. ( 2019 ). A scale to characterize the strength and impacts of atmospheric rivers. Bulletin of the American Meteorological Society, 100 ( 2 ), 269 - 289. https://doi.org/10.1175/BAMS-D-18-0023.1
dc.identifier.citedreferenceRalph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz, J. J., & Wick, G. A. ( 2019 ). ARTMIP- early start comparison of atmospheric river detection tools: How many atmospheric rivers hit northern California’s Russian River watershed? Climate Dynamics, 52 ( 7- 8 ), 4973 - 4994. https://doi.org/10.1007/s00382-018-4427-5
dc.identifier.citedreferenceRamos, A. M., Blamey, R. C., Algarra, I., Nieto, R., Gimeno, L., Tomé, R., & Trigo, R. M. ( 2019 ). From Amazonia to southern Africa: Atmospheric moisture transport through low- level jets and atmospheric rivers. Annals of the New York Academy of Sciences, 1436 ( 1 ), 217 - 230. https://doi.org/10.1111/nyas.13960
dc.identifier.citedreferenceRamos, A. M., Trigo, R. M., Liberato, M. L. R., & Tomé, R. ( 2015 ). Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. Journal of Hydrometeorology, 16 ( 2 ), 579 - 597. https://doi.org/10.1175/JHM-D-14-0103.1
dc.identifier.citedreferenceRasmusson, E. M., & Arkin, P. A. ( 1993 ). A global view of large- scale precipitation variability. Journal of Climate, 6 ( 8 ), 1495 - 1522. https://doi.org/10.1175/1520-0442(1993)006<1495:AGVOLS>2.0.CO;2
dc.identifier.citedreferenceReid, K. J., King, A. D., Lane, T. P., & Short, E. ( 2020 ). The sensitivity of atmospheric river identification to integrated water vapor transport threshold, resolution, and regridding method. Journal of Geophysical Research: Atmospheres, 125 ( 20 ), 1 - 15. https://doi.org/10.1029/2020JD032897
dc.identifier.citedreferenceRhoades, A. M., Jones, A. D., O- Brien, T. A., O- Brien, J. P., Ullrich, P. A., & Zarzycki, C. M. ( 2020 ). Influences of North Pacific Ocean domain extent on the western U.S. Winter hydroclimatology in variable- resolution CESM. Journal of Geophysical Research: Atmospheres, 125 ( 14 ), e2019JD031977. https://doi.org/10.1029/2019JD031977
dc.identifier.citedreferenceRhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O- Brien, T. A., Patricola, C. M., & Zhou, Y. ( 2020 ). The shifting scales of western U.S. landfalling atmospheric rivers under climate change. Geophysical Research Letters, 47 ( 17 ), e2020GL089096. https://doi.org/10.1029/2020GL089096
dc.identifier.citedreferenceRhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F., & Jones, A. D. ( 2021 ). Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather and Climate Extremes, 32, 100326. https://doi.org/10.1016/j.wace.2021.100326
dc.identifier.citedreferenceRutz, J. J., James Steenburgh, W., & Martin Ralph, F. ( 2014 ). Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Monthly Weather Review, 142 ( 2 ), 905 - 921. https://doi.org/10.1175/MWR-D-13-00168.1
dc.identifier.citedreferenceRutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., & Viale, M. ( 2019 ). The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. Journal of Geophysical Research: Atmospheres, 124 ( 24 ), 13777 - 13802. https://doi.org/10.1029/2019JD030936
dc.identifier.citedreferenceShearer, E. J., Nguyen, P., Sellars, S. L., Analui, B., Kawzenuk, B., Hsu, K.- l., & Sorooshian, S. ( 2020 ). Examination of global midlatitude atmospheric river lifecycles using an object- oriented methodology. Journal of Geophysical Research: Atmospheres, 125 ( 22 ), e2020JD033425. https://doi.org/10.1029/2020JD033425
dc.identifier.citedreferenceShields, C. A., & Kiehl, J. T. ( 2016b ). Simulating the pineapple express in the half degree community climate System Model, CCSM4. Geophysical Research Letters, 43 ( 14 ), 7767 - 7773. https://doi.org/10.1002/2016GL069476
dc.identifier.citedreferenceShields, C. A., & Kiehl, J. T. ( 2016a ). Atmospheric river landfall- latitude changes in future climate simulations. Geophysical Research Letters, 43 ( 16 ), 8775 - 8782. https://doi.org/10.1002/2016GL070470
dc.identifier.citedreferenceShields, C. A., Rosenbloom, N., Bates, S., Hannay, C., Hu, A., Payne, A. E., & Truesdale, J. ( 2019 ). Meridional heat transport during atmospheric rivers in high- resolution CESM climate projections. Geophysical Research Letters, 46 ( 24 ), 14702 - 14712. https://doi.org/10.1029/2019GL085565
dc.identifier.citedreferenceShields, C. A., Rutz, J. J., Leung, L. R., Ralph, F. M., Wehner, M., O- Brien, T., & Pierce, R. ( 2019 ). Defining uncertainties through comparison of atmospheric river tracking methods. Bulletin of the American Meteorological Society, 100 ( 2 ), ES93 - ES96. https://doi.org/10.1175/BAMS-D-18-0200.1
dc.identifier.citedreferenceShields, C. A., Rutz, J. J., Leung, L.- Y., Ralph, F. M., Wehner, M., Kawzenuk, B., & Nguyen, P. ( 2018 ). Atmospheric river tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11 ( 6 ), 2455 - 2474. https://doi.org/10.5194/gmd-11-2455-2018
dc.identifier.citedreferenceSkinner, C. B., Lora, J. M., Payne, A. E., & Poulsen, C. J. ( 2020 ). Atmospheric river changes shaped mid- latitude hydroclimate since the mid- holocene. Earth and Planetary Science Letters, 541, 116293. https://doi.org/10.1016/j.epsl.2020.116293
dc.identifier.citedreferenceSousa, P. M., Ramos, A. M., Raible, C. C., Messmer, M., Tomé, R., Pinto, J. G., & Trigo, R. M. ( 2020 ). North Atlantic integrated water vapor transport- From 850 to 2100 CE: Impacts on western European Rainfall. Journal of Climate, 33 ( 1 ), 263 - 279. https://doi.org/10.1175/JCLI-D-19-0348.1
dc.identifier.citedreferenceStohl, A., Forster, C., & Sodemann, H. ( 2008 ). Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N- A tale of hurricanes and an atmospheric river. Journal of Geophysical Research Atmospheres, 113 ( 5 ), 1 - 13. https://doi.org/10.1029/2007JD009006
dc.identifier.citedreferenceTaylor, K. E. ( 2001 ). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106 ( D7 ), 7183 - 7192. https://doi.org/10.1029/2000JD900719
dc.identifier.citedreferenceTaylor, K. E., Stouffer, R. J., & Meehl, G. A. ( 2012 ). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 ( 4 ), 485 - 498. https://doi.org/10.1175/BAMS-D-11-00094.1
dc.identifier.citedreferenceThepenir, R.- M., & Cruette, D. ( 1981 ). Formation of cloud bands associated with the American subtropical jet stream and their interaction with midlatitude synoptic disturbances reaching Europe. Monthly Weather Review, 109 ( 10 ), 2209 - 2220. https://doi.org/10.1175/1520-0493(1981)109<2209:FOCBAW>2.0.CO;2
dc.identifier.citedreferenceTilinina, N., Gulev, S. K., Rudeva, I., & Koltermann, P. ( 2013 ). Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. Journal of Climate, 26 ( 17 ), 6419 - 6438. https://doi.org/10.1175/JCLI-D-12-00777.1
dc.identifier.citedreferenceUllrich, P. A., & Zarzycki, C. M. ( 2017 ). TempestExtremes: A framework for scale- insensitive pointwise feature tracking on unstructured grids. Geoscientific Model Development, 10 ( 3 ), 1069 - 1090. https://doi.org/10.5194/gmd-10-1069-2017
dc.identifier.citedreferenceViale, M., & Nuñez, M. N. ( 2011 ). Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. Journal of Hydrometeorology, 12 ( 4 ), 481 - 507. https://doi.org/10.1175/2010JHM1284.1
dc.identifier.citedreferenceWaliser, D. E., Moncrieff, M. W., Burridge, D., Fink, A. H., Gochis, D., Goswami, B. N., & Yuter, S. ( 2012 ). The - Year- of tropical convection (May 2008- April 2010): Climate variability and weather highlights. Bulletin of the American Meteorological Society, 93 ( 8 ), 1189 - 1218. https://doi.org/10.1175/2011BAMS3095.1
dc.identifier.citedreferenceWarner, M. D., Mass, C. F., & Salathé, E. P. ( 2015 ). Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. Journal of Hydrometeorology, 16 ( 1 ), 118 - 128. https://doi.org/10.1175/JHM-D-14-0080.1
dc.identifier.citedreferenceWarner, M. D., Mass, C. F., & Salatheé, E. P. ( 2012 ). Wintertime extreme precipitation events along the Pacific Northwest Coast: Climatology and synoptic evolution. Monthly Weather Review, 140 ( 7 ), 2021 - 2043. https://doi.org/10.1175/MWR-D-11-00197.1
dc.identifier.citedreferenceWille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., & Codron, F. ( 2019 ). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12 ( 11 ), 911 - 916. https://doi.org/10.1038/s41561-019-0460-1
dc.identifier.citedreferenceWille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., & Codron, F. ( 2021 ). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126 ( 8 ), e2020JD033788. https://doi.org/10.1029/2020JD033788
dc.identifier.citedreferenceXin, X., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., et al. ( 2019 ). BCC BCC- CSM2MR model output prepared for CMIP6 ScenarioMIP ssp585 (Version 20181130) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3050
dc.identifier.citedreferenceYukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., et al. ( 2019 ). MRI MRI- ESM2.0 model output prepared for CMIP6 ScenarioMIP ssp585 (Version 20190625) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6929
dc.identifier.citedreferenceZhang, Z., Ralph, F. M., & Zheng, M. ( 2019 ). The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophysical Research Letters, 46 ( 3 ), 1814 - 1823. https://doi.org/10.1029/2018GL079071
dc.identifier.citedreferenceZhou, Y., O- Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. ( 2021 ). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126 ( 8 ), 1 - 22. https://doi.org/10.1029/2020JD033711
dc.identifier.citedreferenceZhu, Y., & Newell, R. E. ( 1998 ). A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review, 126 ( 3 ), 725 - 735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2
dc.identifier.citedreferenceEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. ( 2016 ). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 ( 5 ), 1937 - 1958. https://doi.org/10.5194/gmd-9-1937-2016
dc.identifier.citedreferenceFyfe, J. C. ( 2003 ). Extratropical Southern Hemisphere cyclones: Harbingers of climate change? Journal of Climate, 16 ( 17 ), 2802 - 2805. https://doi.org/10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2
dc.identifier.citedreferenceGao, Y., Lu, J., & Leung, L. R. ( 2016 ). Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. Journal of Climate, 29 ( 18 ), 6711 - 6726. https://doi.org/10.1175/JCLI-D-16-0088.1
dc.identifier.citedreferenceBao, J. W., Michelson, S. A., Neiman, P. J., Ralph, F. M., & Wilczak, J. M. ( 2006 ). Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Monthly Weather Review, 134 ( 4 ), 1063 - 1080. https://doi.org/10.1175/MWR3123.1
dc.identifier.citedreferenceBlamey, R. C., Ramos, A. M., Trigo, R. M., Tomé, R., & Reason, C. J. ( 2018 ). The influence of atmospheric rivers over the South Atlantic on winter rainfall in South Africa. Journal of Hydrometeorology, 19 ( 1 ), 127 - 142. https://doi.org/10.1175/JHM-D-17-0111.1
dc.identifier.citedreferenceBoucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.- A., et al. (2019). IPSL IPSL- CM6A- LR model output prepared for CMIP6 ScenarioMIP ssp585 (Version 20180803) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5271
dc.identifier.citedreferenceBrowning, K. A., & Pardoe, C. W. ( 1973 ). Structure of low- level jet streams ahead of mid- latitude cold fronts. Quarterly Journal of the Royal Meteorological Society, 99 ( 422 ), 619 - 638. https://doi.org/10.1002/qj.49709942204
dc.identifier.citedreferenceChang, E. K., Guo, Y., & Xia, X. ( 2012 ). CMIP5 multimodel ensemble projection of storm track change under global warming. Journal of Geophysical Research Atmospheres, 117 ( 23 ), 1 - 19. https://doi.org/10.1029/2012JD018578
dc.identifier.citedreferenceDavis, S. M., & Rosenlof, K. H. ( 2012 ). A multidiagnostic intercomparison of tropical- width time series using reanalyses and satellite observations. Journal of Climate, 25 ( 4 ), 1061 - 1078. https://doi.org/10.1175/JCLI-D-11-00127.1
dc.identifier.citedreferenceDettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. ( 2011 ). Atmospheric rivers, floods and the water resources of California. Water, 3 ( 2 ), 445 - 478. https://doi.org/10.3390/w3020445
dc.identifier.citedreferenceEspinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. ( 2018 ). Global analysis of climate change projection effects on atmospheric rivers. Geophysical Research Letters, 45 ( 9 ), 4299 - 4308. https://doi.org/10.1029/2017GL076968
dc.identifier.citedreferenceGao, Y., Lu, J., Leung, L. R., Yang, Q., Hagos, S., & Qian, Y. ( 2015 ). Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophysical Research Letters, 42 ( 17 ), 7179 - 7186. https://doi.org/10.1002/2015GL065435
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., & Zhao, B. ( 2017 ). The Modern- Era Retrospective Analysis for Research and Applications, version 2 (MERRA- 2). Journal of Climate, 30 ( 14 ), 5419 - 5454. https://doi.org/10.1175/JCLI-D-16-0758.1
dc.identifier.citedreferenceGershunov, A., Shulgina, T., Clemesha, R. E. S., Guirguis, K., Pierce, D. W., Dettinger, M. D., & Ralph, F. M. ( 2019 ). Precipitation regime change in Western North America: The role of atmospheric rivers. Scientific Reports, 9 ( 1 ), 9944. https://doi.org/10.1038/s41598-019-46169-w
dc.identifier.citedreferenceGershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., & Rutz, J. J. ( 2017 ). Assessing the climate- scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters, 44 ( 15 ), 7900 - 7908. https://doi.org/10.1002/2017GL074175
dc.identifier.citedreferenceGimeno, L., Algarra, I., Eiras- Barca, J., Ramos, A. M., & Nieto, R. ( 2021 ). Atmospheric river, a term encompassing different meteorological patterns. WIREs Water, 8 ( 6 ), e1558. https://doi.org/10.1002/wat2.1558
dc.identifier.citedreferenceGimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., & Marengo, J. ( 2016 ). Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annual Review of Environment and Resources, 41 ( 1 ), 117 - 141. https://doi.org/10.1146/annurev-environ-110615-085558
dc.identifier.citedreferenceGorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. ( 2014 ). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41 ( 17 ), 6199 - 6206. https://doi.org/10.1002/2014GL060881
dc.identifier.citedreferenceGuan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J., & Neiman, P. J. ( 2010 ). Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophysical Research Letters, 37 ( 20 ), L20401. https://doi.org/10.1029/2010GL044696
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2015 ). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120 ( 24 ), 12514 - 12535. https://doi.org/10.1002/2015JD024257
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2017 ). Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. Journal of Geophysical Research, 122 ( 11 ), 5556 - 5581. https://doi.org/10.1002/2016JD026174
dc.identifier.citedreferenceGuan, B., Waliser, D. E., & Ralph, F. M. ( 2018 ). An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. Journal of Hydrometeorology, 19 ( 2 ), 321 - 337. https://doi.org/10.1175/JHM-D-17-0114.1
dc.identifier.citedreferenceHaarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., & von Storch, J.- S. ( 2016 ). High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9 ( 11 ), 4185 - 4208. https://doi.org/10.5194/gmd-9-4185-2016
dc.identifier.citedreferenceHagos, S., Ruby Leung, L., Yang, Q., Zhao, C., & Lu, J. ( 2015 ). Resolution and dynamical core dependence of atmospheric river frequency in global model simulations. Journal of Climate, 28 ( 7 ), 2764 - 2776. https://doi.org/10.1175/JCLI-D-14-00567.1
dc.identifier.citedreferenceHuang, H., Patricola, C. M., Bercos- Hickey, E., Zhou, Y., Rhoades, A., Risser, M. D., & Collins, W. D. ( 2021 ). Sources of subseasonal- to- seasonal predictability of atmospheric rivers and precipitation in the western United States. Journal of Geophysical Research: Atmospheres, 126, e2020JD034053. https://doi.org/10.1029/2020JD034053
dc.identifier.citedreferenceHuning, L. S., Margulis, S. A., Guan, B., Waliser, D. E., & Neiman, P. J. ( 2017 ). Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophysical Research Letters, 44 ( 20 ), 10445 - 10453. https://doi.org/10.1002/2017GL075201
dc.identifier.citedreferenceIskenderian, H. ( 1995 ). A 10- year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns. Journal of Climate, 8 ( 6 ), 1630 - 1637. https://doi.org/10.1175/1520-0442(1995)008<1630:AYCONH>2.0.CO;2
dc.identifier.citedreferenceKiehl, J. T., Shields, C. A., Snyder, M. A., Zachos, J. C., & Rothstein, M. ( 2018 ). Greenhouse- and orbital- forced climate extremes during the early Eocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 ( 2130 ), 20170085. https://doi.org/10.1098/rsta.2017.0085
dc.identifier.citedreferenceKiladis, G. N., & Weickmann, K. M. ( 1992 ). Extratropical forcing of tropical Pacific convection during northern winter. Monthly Weather Review, 120 ( 9 ), 1924 - 1939. https://doi.org/10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2
dc.identifier.citedreferenceKuhnel, I. ( 1989 ). Tropical- extratropical cloudband climatology based on satellite data. International Journal of Climatology, 9 ( 5 ), 441 - 463. https://doi.org/10.1002/joc.3370090502
dc.identifier.citedreferenceLackmann, G. M., & Gyakum, J. R. ( 1999 ). Heavy cold- season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17- 18 January 1986. Weather and Forecasting, 14 ( 5 ), 687 - 700. https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2
dc.identifier.citedreferenceLau, K.- M., & Chan, P. H. ( 1988 ). Intraseasonal and interannual variations of tropical convection: A possible link between the 40- 50 day oscillation and ENSO? Journal of the Atmospheric Sciences, 45 ( 3 ), 506 - 521. https://doi.org/10.1175/1520-0469(1988)045<0506:IAIVOT>2.0.CO;2
dc.identifier.citedreferenceLavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. ( 2016 ). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43 ( 22 ), 11852 - 11858. https://doi.org/10.1002/2016GL071320
dc.identifier.citedreferenceLavers, D. A., Ralph, F. M., Waliser, D. E., Gershunov, A., & Dettinger, M. D. ( 2015 ). Climate change intensification of horizontal water vapor transport in CMIP5. Geophysical Research Letters, 42 ( 13 ), 5617 - 5625. https://doi.org/10.1002/2015GL064672
dc.identifier.citedreferenceLavers, D. A., & Villarini, G. ( 2013 ). The nexus between atmospheric rivers and extreme precipitation across Europe. Geophysical Research Letters, 40 ( 12 ), 3259 - 3264. https://doi.org/10.1002/grl.50636
dc.identifier.citedreferenceLavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., & Wade, A. J. ( 2012 ). The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large- scale climatic circulation. Journal of Geophysical Research Atmospheres, 117 ( 20 ), 1 - 13. https://doi.org/10.1029/2012JD018027
dc.identifier.citedreferenceLavers, D. A., Waliser, D. E., Ralph, F. M., & Dettinger, M. D. ( 2016 ). Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophysical Research Letters, 43 ( 5 ), 2275 - 2282. https://doi.org/10.1002/2016GL067765
dc.identifier.citedreferenceLeung, L.- R., & Qian, Y. ( 2009 ). Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophysical Research Letters, 36 ( 3 ), 1. https://doi.org/10.1029/2008GL036445
dc.identifier.citedreferenceLora, J. M., Mitchell, J. L., Risi, C., & Tripati, A. E. ( 2017 ). North Pacific atmospheric rivers and their influence on western North America at the last Glacial Maximum. Geophysical Research Letters, 44 ( 2 ), 1051 - 1059. https://doi.org/10.1002/2016GL071541
dc.identifier.citedreferenceLora, J. M., Shields, C. A., & Rutz, J. J. ( 2020 ). Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophysical Research Letters, 47 ( 20 ), 1 - 10. https://doi.org/10.1029/2020GL089302
dc.identifier.citedreferenceLucas, C., Timbal, B., & Nguyen, H. ( 2014 ). The expanding tropics: A critical assessment of the observational and modeling studies. WIREs Climate Change, 5 ( 1 ), 89 - 112. https://doi.org/10.1002/wcc.251
dc.identifier.citedreferenceManney, G. L., & Hegglin, M. I. ( 2018 ). Seasonal and regional variations of long- term changes in upper- tropospheric jets from reanalyses. Journal of Climate, 31 ( 1 ), 423 - 448. https://doi.org/10.1175/JCLI-D-17-0303.1
dc.identifier.citedreferenceMassoud, E., Espinoza, V., Guan, B., & Waliser, D. ( 2019 ). Global climate model ensemble approaches for future projections of atmospheric rivers. Earth’s Future, 7 ( 10 ), 1136 - 1151. https://doi.org/10.1029/2019EF001249
dc.identifier.citedreferenceMattingly, K. S., Mote, T. L., Fettweis, X., van As, D., Tricht, K. V., Lhermitte, S., & Fausto, R. S. ( 2020 ). Strong summer atmospheric rivers trigger Greenland ice sheet melt through spatially varying surface energy balance and cloud regimes. Journal of Climate, 33 ( 16 ), 6809 - 6832. https://doi.org/10.1175/JCLI-D-19-0835.1
dc.identifier.citedreferenceMcClenny, E. E., Ullrich, P. A., & Grotjahn, R. ( 2020 ). Sensitivity of atmospheric river vapor transport and precipitation to uniform sea surface temperature increases. Journal of Geophysical Research: Atmospheres, 125 ( 21 ), 1 - 20. https://doi.org/10.1029/2020JD033421
dc.identifier.citedreferenceMcGuirk, J. P., Thompson, A. H., & Smith, N. R. ( 1987 ). Moisture bursts over the tropical Pacific ocean. Monthly Weather Review, 115 ( 4 ), 787 - 798. https://doi.org/10.1175/1520-0493(1987)115<0787:MBOTTP>2.0.CO;2
dc.identifier.citedreferenceMenemenlis, S., Lora, J. M., Lofverstrom, M., & Chandan, D. ( 2021 ). Influence of stationary waves on mid- Pliocene atmospheric rivers and hydroclimate. Global and Planetary Change, 204, 103557. https://doi.org/10.1016/j.gloplacha.2021.103557
dc.identifier.citedreferenceMundhenk, B. D., Barnes, E. A., & Maloney, E. D. ( 2016 ). All- season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate, 29 ( 13 ), 4885 - 4903. https://doi.org/10.1175/JCLI-D-15-0655.1
dc.identifier.citedreferenceNeiman, P. J., Ralph, F. M., White, A. B., Kingsmill, D. E., & Persson, P. O. ( 2002 ). The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Monthly Weather Review, 130 ( 6 ), 200211468. https://doi.org/10.1175/1520-0493(2002)130<1468:tsrbuf>2.0.co;2
dc.identifier.citedreferenceNeiman, P. J., Ralph, F. M., Wick, G. A., Kuo, Y. H., Wee, T. K., Ma, Z., & Dettinger, M. D. ( 2008 ). Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Monthly Weather Review, 136 ( 11 ), 4398 - 4420. https://doi.org/10.1175/2008MWR2550.1
dc.identifier.citedreferenceNeiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., & Dettinger, M. D. ( 2008 ). Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9 ( 1 ), 22 - 47. https://doi.org/10.1175/2007JHM855.1
dc.identifier.citedreferenceNeiman, P. J., Ralph, M. F., Moore, B. J., Hughes, M., Mahoney, K. M., Cordeira, J. M., & Dettinger, M. D. ( 2013 ). The landfall and inland penetration of a flood- producing atmospheric river in Arizona. Part I: Observed synoptic- scale, orographic, and hydrometeorological characteristics. Journal of Hydrometeorology, 14 ( 2 ), 460 - 484. https://doi.org/10.1175/JHM-D-12-0101.1
dc.identifier.citedreferenceNewell, R. E., Newell, N. E., Zhu, Y., & Scott, C. ( 1992 ). Tropospheric rivers?- A pilot study. Geophysical Research Letters, 19 ( 24 ), 2401 - 2404. https://doi.org/10.1029/92GL02916
dc.identifier.citedreferenceNewell, R. E., & Zhu, Y. ( 1994 ). Tropospheric rivers: A one- year record and a possible application to ice core data. Geophysical Research Letters, 21 ( 2 ), 113 - 116. https://doi.org/10.1029/93GL03113
dc.identifier.citedreferenceNewman, M., Kiladis, G. N., Weickmann, K. M., Ralph, M. F., & Sardeshmukh, P. D. ( 2012 ). Relative contributions of synoptic and low- frequency eddies to time- mean atmospheric moisture transport, including the role of atmospheric rivers. Journal of Climate, 25 ( 21 ), 7341 - 7361. https://doi.org/10.1175/JCLI-D-11-00665.1
dc.identifier.citedreferenceO- Brien, T. A., Payne, A. E., Shields, C. A., Rutz, J., Brands, S., Castellano, C., & Zhou, Y. ( 2020 ). Detection uncertainty matters for understanding atmospheric rivers. Bulletin of the American Meteorological Society, 101 ( 6 ), E790 - E796. https://doi.org/10.1175/BAMS-D-19-0348.1
dc.identifier.citedreferenceO- Brien, T. A., Risser, M. D., Loring, B., Elbashandy, A. A., Krishnan, H., Johnson, J., & Collins, W. D. ( 2020 ). Detection of atmospheric rivers with inline uncertainty quantification: TECA- BARD v1.0.1. Geoscientific Model Development, 13 ( 12 ), 6131 - 6148. https://doi.org/10.5194/gmd-13-6131-2020
dc.identifier.citedreferenceO- Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., & Sanderson, B. M. ( 2016 ). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9 ( 9 ), 3461 - 3482. https://doi.org/10.5194/gmd-9-3461-2016
dc.identifier.citedreferencePayne, A. E., Demory, M.- E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., & Ralph, F. M. ( 2020 ). Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 1 ( 3 ), 143 - 157. https://doi.org/10.1038/s43017-020-0030-5
dc.identifier.citedreferencePayne, A. E., & Magnusdottir, G. ( 2015 ). An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. Journal of Geophysical Research: Atmospheres, 120 ( 21 ), 11173 - 11190. https://doi.org/10.1002/2015JD023586
dc.identifier.citedreferencePena- Ortiz, C., Gallego, D., Ribera, P., Ordonez, P., & Alvarez- Castro, M. D. C. ( 2013 ). Observed trends in the global jet stream characteristics during the second half of the 20th century. Journal of Geophysical Research: Atmospheres, 118 ( 7 ), 2702 - 2713. https://doi.org/10.1002/jgrd.50305
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.