Show simple item record

Clinical bone health among adults with cerebral palsy: moving beyond assessing bone mineral density alone

dc.contributor.authorWhitney, Daniel G
dc.contributor.authorCaird, Michelle S
dc.contributor.authorClines, Gregory A
dc.contributor.authorHurvitz, Edward A
dc.contributor.authorJepsen, Karl J
dc.date.accessioned2022-04-08T18:03:00Z
dc.date.available2023-05-08 14:02:59en
dc.date.available2022-04-08T18:03:00Z
dc.date.issued2022-04
dc.identifier.citationWhitney, Daniel G; Caird, Michelle S; Clines, Gregory A; Hurvitz, Edward A; Jepsen, Karl J (2022). "Clinical bone health among adults with cerebral palsy: moving beyond assessing bone mineral density alone." Developmental Medicine & Child Neurology (4): 469-475.
dc.identifier.issn0012-1622
dc.identifier.issn1469-8749
dc.identifier.urihttps://hdl.handle.net/2027.42/171995
dc.publisherWiley‐Interscience Publication
dc.titleClinical bone health among adults with cerebral palsy: moving beyond assessing bone mineral density alone
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171995/1/dmcn15093.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171995/2/dmcn15093_am.pdf
dc.identifier.doi10.1111/dmcn.15093
dc.identifier.sourceDevelopmental Medicine & Child Neurology
dc.identifier.citedreferenceVittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007; 165: 710 – 8.
dc.identifier.citedreferenceBigelow EM, Patton DM, Ward FS, Ciarelli A, Casden M, Clark A, et al. External bone size is a key determinant of strength‐decline trajectories of aging male radii. J Bone Miner Res. 2019; 34: 825 – 37.
dc.identifier.citedreferenceBhola S, Chen J, Fusco J, Duarte GF, Andarawis‐Puri N, Ghillani R, et al. Variation in childhood skeletal robustness is an important determinant of cortical area in young adults. Bone. 2011; 49: 799 – 809.
dc.identifier.citedreferenceEpelboym Y, Gendron RN, Mayer J, Fusco J, Nasser P, Gross G, et al. The interindividual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue‐quality traits and differential bone loss patterns. J Bone Miner Res. 2012; 27: 1501 – 10.
dc.identifier.citedreferenceLeslie WD, Lix LM, Tsang JF, Caetano PA, Manitoba Bone Density Program. Single‐site vs multisite bone density measurement for fracture prediction. Arch Intern Med. 2007; 167: 1641 – 7.
dc.identifier.citedreferenceLooker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998; 8: 468 – 89.
dc.identifier.citedreferenceHind K, Oldroyd B, Truscott JG. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total‐body, lumbar spine, and femoral bone mineral density in adults. J Clin Densitom. 2010; 13: 13 – 7.
dc.identifier.citedreferenceKhoury DJ, Szalay EA. Bone mineral density correlation with fractures in nonambulatory pediatric patients. J Pediatr Orthop. 2007; 27: 562 – 6.
dc.identifier.citedreferenceTrinh A, Wong P, Fahey MC, Brown J, Churchyard A, Strauss BJ, et al. Musculoskeletal and endocrine health in adults with cerebral palsy: new opportunities for intervention. J Clin Endocrinol Metab. 2016; 101: 1190 – 7.
dc.identifier.citedreferenceMarciniak C, Gabet J, Lee J, Ma M, Brander K, Wysocki N. Osteoporosis in adults with cerebral palsy: feasibility of DXA screening and risk factors for low bone density. Osteoporos Int. 2016; 27: 1477 – 84.
dc.identifier.citedreferenceHosmer DW, Lemeshow SL. Applied logistic regression. 2 nd ed. Wiley‐Interscience Publication; 2000.
dc.identifier.citedreferenceHeinze G, Wallisch C, Dunkler D. Variable selection ‐ A review and recommendations for the practicing statistician. Biom J 2018; 60: 431 – 49.
dc.identifier.citedreferenceWhitney DG, Caird MS, Jepsen KJ, Kamdar NS, Marsack‐Topolewski CN, Hurvitz EA, et al. Elevated fracture risk for adults with neurodevelopmental disabilities. Bone. 2020; 130: 115080.
dc.identifier.citedreferenceKannikeswaran S, French ZP, Walsh K, Swallow J, Caird MS, Whitney DG. Fracture characteristics by age, sex, and ambulatory status among individuals with cerebral palsy: a descriptive study. Disabil Rehabil. 2021; 1 – 7. https://doi.org/10.1080/09638288.2021.1921860. Online ahead of print.
dc.identifier.citedreferenceWhitney DG, Alford AI, Devlin MJ, Caird MS, Hurvitz EA, Peterson MD. Adults with cerebral palsy have higher prevalence of fracture compared with adults without cerebral palsy independent of osteoporosis and cardiometabolic diseases. J Bone Miner Res. 2019; 34: 1240 – 7.
dc.identifier.citedreferenceWhitney DG, Hurvitz EA, Caird MS. Critical periods of bone health across the lifespan for individuals with cerebral palsy: Informing clinical guidelines for fracture prevention and monitoring. Bone. 2021; 150: 116009.
dc.identifier.citedreferenceJensen AK, Low CE, Pal P, Raczynski TN. Relation of musculoskeletal strength and function to postural stability in ambulatory adults with cerebral palsy. Arch Rehabil Res Clin Transl. 2020; 2: 100074.
dc.identifier.citedreferenceJepsen KJ, Evans R, Negus CH, Gagnier JJ, Centi A, Erlich T, et al. Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. J Bone Miner Res. 2013; 28: 1290 – 1300.
dc.identifier.citedreferenceWhitney DG, Singh H, Miller F, Barbe MF, Slade JM, Pohlig RT et al. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. Bone. 2017; 94: 90 – 7.
dc.identifier.citedreferenceLekamwasam S, Lenora RS. Effect of leg rotation on hip bone mineral density measurements. J Clin Densitom. 2003; 6: 331 – 6.
dc.identifier.citedreferenceHenderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD. Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr. 2005; 146: 769 – 75.
dc.identifier.citedreferenceHenderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010; 25: 520 – 6.
dc.identifier.citedreferenceTrinh A, Wong P, Fahey MC, Brown J, Strauss BJ, Ebeling PR et al. Longitudinal changes in bone density in adolescents and young adults with cerebral palsy: A case for early intervention. Clin Endocrinol (Oxf). 2019; 91: 517 – 24.
dc.identifier.citedreferenceModlesky CM, Kanoff SA, Johnson DL, Subramanian P, Miller F. Evaluation of the femoral midshaft in children with cerebral palsy using magnetic resonance imaging. Osteoporos Int. 2009; 20: 609 – 15.
dc.identifier.citedreferenceNoble JJ, Fry N, Lewis AP, Charles‐Edwards GD, Keevil SF, Gough M, et al. Bone strength is related to muscle volume in ambulant individuals with bilateral spastic cerebral palsy. Bone. 2014; 66: 251 – 5.
dc.identifier.citedreferencePandey N, Bhola S, Goldstone A, Chen F, Chrzanowski J, Terranova CJ, et al. Interindividual variation in functionally adapted trait sets is established during postnatal growth and predictable based on bone robustness. J Bone Miner Res. 2009; 24: 1969 – 80.
dc.identifier.citedreferenceRuff CB, Hayes WC. Sex differences in age‐related remodeling of the femur and tibia. J Orthop Res. 1988; 6: 886 – 96.
dc.identifier.citedreferenceSamelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019; 7: 34 – 43.
dc.identifier.citedreferenceBolger MW, Romanowicz GE, Bigelow EMR, Ward FS, Ciarelli A, Jepsen KJ, et al. External bone size identifies different strength‐decline trajectories for the male human femora. J Struct Biol. 2020; 212: 107650.
dc.identifier.citedreferenceJepsen KJ, Kozminski A, Bigelow EM, Schlecht SH, Goulet RW, Harlow SD, et al. Femoral neck external size but not aBMD predicts structural and mass changes for women transitioning through menopause. J Bone Miner Res. 2017; 32: 1218 – 28.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.