Show simple item record

Resistivity Scaling Transition in Ultrathin Metal Film at Critical Thickness and Its Implication for the Transparent Conductor Applications

dc.contributor.authorPark, Yong-Bum
dc.contributor.authorJeong, Changyeong
dc.contributor.authorGuo, L. Jay
dc.date.accessioned2022-04-08T18:03:19Z
dc.date.available2023-04-08 14:03:17en
dc.date.available2022-04-08T18:03:19Z
dc.date.issued2022-03
dc.identifier.citationPark, Yong-Bum ; Jeong, Changyeong; Guo, L. Jay (2022). "Resistivity Scaling Transition in Ultrathin Metal Film at Critical Thickness and Its Implication for the Transparent Conductor Applications." Advanced Electronic Materials 8(3): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/171998
dc.description.abstractUnderstanding of ultrathin metal film’s electrical and optical properties at sub‐10 nm thickness may provide important engineering insight on its application as a transparent conductor. Here, a rapid change is observed in the ultrathin metal film’s electrical and optical scaling properties as the thickness shrinks to below a certain critical thickness dc. Below this thickness, the metal film’s electrical properties are shown to be strongly influenced by the inhomogeneity of the film which can be modeled via general effective media theory by incorporating size‐effect contribution. As a result, below dc, carrier’s scattering time rapidly decreases with a reduced mean free path leading to a rapid rise in resistivity. Also, the film’s optical loss increases while the optical transmission plateaus below dc. As one promising application of thin metal film is transparent conductor where the film’s electrical and optical properties are equally important, its maximum theoretical figure‐of‐merit is shown, which is determined at this dc serving as an important engineering metric.It is observed that a rapid increase in electrical resistivity of ultrathin Ag film below its critical thickness where its resistivity is strongly influenced by film’s morphology, which can be modeled by extended general effective media theory. The critical thickness of metal film can serve as an important engineering metric for its use as a transparent conductor application.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.othergeneral effective media
dc.subject.othersize effect theory
dc.subject.otherultrathin metal film
dc.subject.otherresistivity scaling
dc.titleResistivity Scaling Transition in Ultrathin Metal Film at Critical Thickness and Its Implication for the Transparent Conductor Applications
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171998/1/aelm202100970.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171998/2/aelm202100970_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171998/3/aelm202100970-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/aelm.202100970
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceD. Zhang, H. Yabe, E. Akita, P. Wang, R.‐i. Murakami, X. Song, J. Appl. Phys. 2011, 109, 104318.
dc.identifier.citedreferenceX. Yang, P. Gao, Z. Yang, J. Zhu, F. Huang, J. Ye, Sci. Rep. 2017, 7, 44576.
dc.identifier.citedreferenceG. Zhao, W. Shen, E. Jeong, S.‐G. Lee, S. M. Yu, T.‐S. Bae, G.‐H. Lee, S. Z. Han, J. Tang, E.‐A. Choi, J. Yun, ACS Appl. Mater. Interfaces 2018, 10, 27510.
dc.identifier.citedreferenceC. Zhang, N. Kinsey, L. Chen, C. Ji, M. Xu, M. Ferrera, X. Pan, V. M. Shalaev, A. Boltasseva, L. J. Guo, Adv. Mater. 2017, 29, 1605177.
dc.identifier.citedreferencea) H. Wang, C. Ji, C. Zhang, Y. Zhang, Z. Zhang, Z. Lu, J. Tan, L. J. Guo, ACS Appl. Mater. Interfaces 2019, 11, 11782; b) N. Erdogan, F. Erden, A. T. Astarlioglu, M. Ozdemir, S. Ozbay, G. Aygun, L. Ozyuzer, Curr. Appl. Phys. 2020, 20, 489.
dc.identifier.citedreferenceF. Moresco, M. Rocca, T. Hildebrandt, M. Henzler, Phys. Rev. Lett. 1999, 83, 2238.
dc.identifier.citedreferenceG. Fahsold, M. Sinther, A. Priebe, S. Diez, A. Pucci, Phys. Rev. B 2002, 65, 235408.
dc.identifier.citedreferenceY.‐G. Bi, Y.‐F. Liu, X.‐L. Zhang, D. Yin, W.‐Q. Wang, J. Feng, H.‐B. Sun, Adv. Opt. Mater. 2019, 7, 1800778.
dc.identifier.citedreferenceJ.‐W. Park, G. Kim, S.‐H. Lee, E.‐H. Kim, G.‐H. Lee, Surf. Coat. Technol. 2010, 205, 915.
dc.identifier.citedreferenceD. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
dc.identifier.citedreferenceB. Bari, J. Lee, T. Jang, P. Won, S. H. Ko, K. Alamgir, M. Arshad, L. J. Guo, J. Mater. Chem. A 2016, 4, 11365.
dc.identifier.citedreferenceC. Jeong, Y.‐B. Park, L. J. Guo, Sci. Adv. 2021, 7, eabg0355.
dc.identifier.citedreferenceA. I. Maaroof, B. L. Evans, J. Appl. Phys. 1994, 76, 1047.
dc.identifier.citedreferencea) N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, V. Pruneri, ACS Appl. Mater. Interfaces 2013, 5, 3048; b) S. Jeong, S. Jung, H. Kang, D. Lee, S.‐B. Choi, S. Kim, B. Park, K. Yu, J. Lee, K. Lee, Adv. Funct. Mater. 2017, 27, 1606842.
dc.identifier.citedreferenceD. S. Ghosh, T. L. Chen, V. Pruneri, Appl. Phys. Lett. 2010, 96, 091106.
dc.identifier.citedreferenceD. S. Ghosh, T. L. Chen, N. Formica, J. Hwang, I. Bruder, V. Pruneri, Sol. Energy Mater. Sol. Cells 2012, 107, 338.
dc.identifier.citedreferenceM. Hövel, B. Gompf, M. Dressel, Phys. Rev. B 2010, 81, 035402.
dc.identifier.citedreferenceC. Zhang, Q. Huang, Q. Cui, C. Ji, Z. Zhang, X. Chen, T. George, S. Zhao, L. J. Guo, ACS Appl. Mater. Interfaces 2019, 11, 27216.
dc.identifier.citedreferenceE. V. Barnat, D. Nagakura, P. I. Wang, T. M. Lu, J. Appl. Phys. 2002, 91, 1667.
dc.identifier.citedreferenceN. Chuang, J. Lin, T. Chang, T. Tsai, K. Chang, C. Wu, IEEE J. Electron Devices Soc. 2016, 4, 441.
dc.identifier.citedreferencea) A. F. Mayadas, R. Feder, R. Rosenberg, J. Vac. Sci. Technol. 1969, 6, 690; b) K. N. Tu, A. M. Gusak, I. Sobchenko, Phys. Rev. B 2003, 67, 245408; c) M. Philipp, Fakultät Mathematik und Naturwissenschaften, Technische Universität Dresden, Dresden 2011.
dc.identifier.citedreferenceY. Li, Plasmonic Optics: Theory and Applications, SPIE Press, Bellingham, Washington 2017.
dc.identifier.citedreferenceG. Haacke, J. Appl. Phys. 1976, 47, 4086.
dc.identifier.citedreferenceG. Ding, C. Clavero, D. Schweigert, M. Le, AIP Adv. 2015, 5, 117234.
dc.identifier.citedreferenceD. Gall, J. Appl. Phys. 2016, 119, 085101.
dc.identifier.citedreferenceT. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, K. R. Coffey, Phys. Rev. B 2010, 81, 155454.
dc.identifier.citedreferenceM. A. Angadi, J. Mater. Sci. 1985, 20, 761.
dc.identifier.citedreferencea) M. H. Cohen, J. Jortner, I. Webman, Phys. Rev. B 1978, 17, 4555; b) P. M. Kogut, J. P. Straley, J. C. Garland, D. B. Tanner, AIP Conf. Proc. 1978, 40, 382; c) R. Landauer, J. Appl. Phys. 1952, 23, 779.
dc.identifier.citedreferenceD. S. McLachlan, M. Blaszkiewicz, R. E. Newnham, J. Am. Ceram. Soc. 1990, 73, 2187.
dc.identifier.citedreferenceM. Taya, Electronic Composites: Modeling, Characterization, Processing, and MEMS Applications, Cambridge University Press, Cambridge 2005.
dc.identifier.citedreferencea) G. Dittmer, Thin Solid Films 1972, 9, 317; b) P. Sheng, B. Abeles, Phys. Rev. Lett. 1972, 28, 34.
dc.identifier.citedreferenceA. L. Efros, B. I. Shklovskii, Phys. Status Solidi B 1976, 76, 475.
dc.identifier.citedreferenceC. Kittel, Introduction to Solid State Physics, Wiley, Hoboken, NJ 2004.
dc.identifier.citedreferencea) S. M. Rossnagel, T. S. Kuan, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. –Process., Meas., Phenom. 2004, 22, 240; b) M. Guilmain, T. Labbaye, F. Dellenbach, C. Nauenheim, D. Drouin, S. Ecoffey, Nanotechnology 2013, 24, 245305; c) E. Ando, M. Miyazaki, Thin Solid Films 2008, 516, 4574.
dc.identifier.citedreferenceC. Ji, D. Liu, C. Zhang, L. J. Guo, Nat. Commun. 2020, 11, 3367.
dc.identifier.citedreferenceC. Zhang, C. Ji, Y.‐B. Park, L. J. Guo, Adv. Opt. Mater. 2021, 9, 2001298.
dc.identifier.citedreferencea) A. Anders, E. Byon, D.‐H. Kim, K. Fukuda, S. H. N. Lim, Solid State Commun. 2006, 140, 225; b) V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, R. S. Williams, Nano Lett. 2009, 9, 178.
dc.identifier.citedreferenceY.‐G. Bi, J. Feng, J.‐H. Ji, Y. Chen, Y.‐S. Liu, Y.‐F. Li, Y.‐F. Liu, X.‐L. Zhang, H.‐B. Sun, Nanoscale 2016, 8, 10010.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.