Show simple item record

Alcohol and nicotine polygenic scores are associated with the development of alcohol and nicotine use problems from adolescence to young adulthood

dc.contributor.authorDeak, Joseph D.
dc.contributor.authorClark, D. Angus
dc.contributor.authorLiu, Mengzhen
dc.contributor.authorSchaefer, Jonathan D.
dc.contributor.authorJang, Seon Kyeong
dc.contributor.authorDurbin, C. Emily
dc.contributor.authorIacono, William G.
dc.contributor.authorMcGue, Matt
dc.contributor.authorVrieze, Scott
dc.contributor.authorHicks, Brian M.
dc.date.accessioned2022-04-08T18:03:26Z
dc.date.available2023-05-08 14:03:23en
dc.date.available2022-04-08T18:03:26Z
dc.date.issued2022-04
dc.identifier.citationDeak, Joseph D.; Clark, D. Angus; Liu, Mengzhen; Schaefer, Jonathan D.; Jang, Seon Kyeong; Durbin, C. Emily; Iacono, William G.; McGue, Matt; Vrieze, Scott; Hicks, Brian M. (2022). "Alcohol and nicotine polygenic scores are associated with the development of alcohol and nicotine use problems from adolescence to young adulthood." Addiction 117(4): 1117-1127.
dc.identifier.issn0965-2140
dc.identifier.issn1360-0443
dc.identifier.urihttps://hdl.handle.net/2027.42/172000
dc.description.abstractBackground and AimsMolecular genetic studies of alcohol and nicotine use have identified many genome‐wide association study (GWAS) loci. We measured associations between drinking and smoking polygenic scores (PGS) and trajectories of alcohol and nicotine use outcomes from late childhood to early adulthood, substance‐specific versus broader‐liability PGS effects, and if PGS performance varied for consumption versus problematic substance use.Design, setting, participants and measurementsWe fitted latent growth curve models with structured residuals to scores on measures of alcohol and nicotine use and problems from ages 14 to 34 years. We then estimated associations between the intercept (initial status) and slope (rate of change) parameters and PGSs for drinks per week (DPW), problematic alcohol use (PAU), cigarettes per day (CPD) and ever being a regular smoker (SMK), controlling for sex and genetic principal components. All data were analyzed in the United States. PGSs were calculated for participants of the Minnesota Twin Family Study (n = 3225) using results from the largest GWAS of alcohol and nicotine consumption and problematic use to date.FindingsEach PGS was associated with trajectories of use for their respective substances [i.e. DPW (βmean = 0.08; βrange = 0.02–0.12) and PAU (βmean = 0.12; βrange = −0.02 to 0.31) for alcohol; CPD (βmean = 0.08; βrange = 0.04–0.14) and SMK (βmean = 0.18; βrange = 0.05–0.36) for nicotine]. The PAU and SMK PGSs also exhibited cross‐substance associations (i.e. PAU for nicotine‐specific intercepts and SMK for alcohol intercepts and slope). All identified SMK PGS effects remained as significant predictors of nicotine and alcohol trajectories (βmean = 0.15; βrange = 0.02–0.33), even after adjusting for the respective effects of all other PGSs.ConclusionsSubstance use‐related polygenic scores (PGSs) vary in the strength and generality versus specificity of their associations with substance use and problems over time. The regular smoking PGS appears to be a robust predictor of substance use trajectories and seems to measure both nicotine‐specific and non‐specific genetic liability for substance use, and potentially externalizing problems in general.
dc.publisherWHO
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAlcohol
dc.subject.otherdevelopmental trajectories
dc.subject.othernicotine
dc.subject.otherpolygenic risk scores
dc.subject.othersmoking
dc.subject.othersubstance use
dc.titleAlcohol and nicotine polygenic scores are associated with the development of alcohol and nicotine use problems from adolescence to young adulthood
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172000/1/add15697_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172000/2/add15697.pdf
dc.identifier.doi10.1111/add.15697
dc.identifier.sourceAddiction
dc.identifier.citedreferenceSivo S, Fan X, Witta L. The biasing effects of unmodeled ARMA time series processes on latent growth curve model estimates. Struct Equat Model. 2005; 12: 215 – 31.
dc.identifier.citedreferenceBelsky DW, Moffitt TE, Baker TB, et al. Polygenic risk and the developmental progression to heavy, persistent smoking and nicotine dependence: evidence from a 4‐decade longitudinal study. JAMA Psychiatry. 2013; 70: 534 – 42.
dc.identifier.citedreferenceLi JJ, Cho SB, Salvatore JE, et al. The impact of peer substance use and polygenic risk on trajectories of heavy episodic drinking across adolescence and emerging adulthood. Alcohol Clin Exp Res. 2017; 41: 65 – 75.
dc.identifier.citedreferenceKsinan AJ, Su J, Aliev F, et al. Unpacking genetic risk pathways for college student alcohol consumption: the mediating role of impulsivity. Alcohol Clin Exp Res. 2019; 43: 2100 – 10.
dc.identifier.citedreferenceSu J, Kuo SI‐C, Meyers JL, Guy MC, Dick DM. Examining interactions between genetic risk for alcohol problems, peer deviance, and interpersonal traumatic events on trajectories of alcohol use disorder symptoms among African American college students. Dev Psychopathol. 2018; 30: 1749 – 61.
dc.identifier.citedreferenceKranzler HR, Zhou H, Kember RL, et al. Genome‐wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019; 10: 1 – 11.
dc.identifier.citedreferenceSanchez‐Roige S, Palmer AA, Fontanillas P, et al. Genome‐wide association study meta‐analysis of the alcohol use disorders identification test (AUDIT) in two population‐based cohorts. Am J Psychiatry. 2019; 176: 107 – 18.
dc.identifier.citedreferenceIacono WG, Carlson SR, Taylor J, Elkins IJ, McGue M. Behavioral disinhibition and the development of substance‐use disorders: findings from the Minnesota twin family study. Dev Psychopathol. 1999; 11: 869 – 900.
dc.identifier.citedreferenceKeyes MA, Malone SM, Elkins IJ, Legrand LN, McGue M, Iacono WG. The enrichment study of the Minnesota twin family study: increasing the yield of twin families at high risk for externalizing psychopathology. Twin Res Hum Genet. 2009; 12: 489 – 501.
dc.identifier.citedreferenceChang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second‐generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015; 4: s13742‐015.
dc.identifier.citedreferenceDas S, Forer L, Schönherr S, et al. Next‐generation genotype imputation service and methods. Nat Genet. 2016; 48: 1284 – 7.
dc.identifier.citedreferenceVilhjálmsson BJ, Yang J, Finucane HK, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015; 97: 576 – 92.
dc.identifier.citedreferenceCurran PJ, Howard AL, Bainter SA, Lane ST, McGinley JS. The separation of between‐person and within‐person components of individual change over time: a latent curve model with structured residuals. J Consult Clin Psychol. 2014; 82: 879.
dc.identifier.citedreferenceBerry D, Willoughby MT. On the practical interpretability of cross‐lagged panel models: rethinking a developmental workhorse. Child Dev. 2017; 88: 1186 – 206.
dc.identifier.citedreferenceWu W, Selig JP, Little TD. Longitudinal data analysis. In: Little TD, editor. Oxford Handbook of Quantitative Methods. In: Statistical Analysis. 2 New York, NY: Oxford University Press. p. 387 – 410.
dc.identifier.citedreferenceKwok O, West SG, Green SB. The impact of misspecifying the within‐subject covariance structure in multiwave longitudinal multilevel models: a Monte Carlo study. Multivar Behav Res. 2007; 42: 557 – 92.
dc.identifier.citedreferencePrice AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome‐wide association studies. Nat Genet. 2006; 38: 904 – 9.
dc.identifier.citedreferenceMuthén LK, Muthén BO. Mplus User’s Guide. 8th ed. Los Angeles, CA: Muthén & Muthén. p. 1998 – 2017.
dc.identifier.citedreferenceAllison PD. Missing data. In: Millsap RE, Maydeu‐Olivares A, editors The SAGE Handbook of Quantitative Methods in Psychology. Thousand Oaks, CA: Sage Publications; 2009. p. 78 – 89.
dc.identifier.citedreferenceFalk CF. Are robust standard errors the best approach for interval estimation with nonnormal data in structural equation modeling? Struct Equ Model Multidiscip J. 2018; 25: 244 – 66.
dc.identifier.citedreferenceWest SG, Taylor AB, Wu W. Model fit and model selection in structural equation modeling. Handbook Struct Equat Model. 2012; 1: 209 – 31.
dc.identifier.citedreferenceKarlsson Linnér R, Mallard TT, Barr PB, Sanchez‐Roige S, Madole JW, Driver MN, et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self‐regulation and addiction. Nature Neuroscience. 2021. 24: 1367 – 76. https://doi.org/10.1101/2020.10.16.342501
dc.identifier.citedreferenceHicks BM, Clark DA, Deak JD, Liu M, Durbin CE & Schaefer JD et al. Polygenic risk score for smoking is associated with externalizing psychopathology and disinhibited personality traits but not internalizing psychopathology in adolescence. Clinical Psychological Science 2021;216770262110021. https://doi.org/10.1101/2020.07.29.227405
dc.identifier.citedreferenceHicks BM, Foster KT, Iacono WG, McGue M. Genetic and environmental influences on the familial transmission of externalizing disorders in adoptive and twin offspring. JAMA Psychiatry. 2013; 70: 1076 – 83.
dc.identifier.citedreferenceKendler KS, Prescott CA, Myers J, Neale MC. The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Arch Gen Psychiatry. 2003; 60: 929 – 37.
dc.identifier.citedreferenceKrueger RF, Hicks BM, Patrick CJ, Carlson SR, Iacono WG, McGue M. Etiologic connections among substance dependence, antisocial behavior, and personality: modeling the externalizing spectrum. Published online 2009.
dc.identifier.citedreferenceKhera AV, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016; 375: 2349 – 58.
dc.identifier.citedreferenceLambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 2019; 28: R133 – 42.
dc.identifier.citedreferenceTorkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018; 19: 581.
dc.identifier.citedreferenceDriver MN, Kuo SI‐C, Dick DM. Genetic feedback for psychiatric conditions: where are we now and where are we going. Am J Med Genet Part B Neuropsychiatr Genet. 2020; 183: 423 – 34.
dc.identifier.citedreferenceMostafavi H, Harpak A, Agarwal I, Conley D, Pritchard JK, Przeworski M. Variable prediction accuracy of polygenic scores within an ancestry group. eLife. 2020; 9: e48376.
dc.identifier.citedreferenceMartin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019; 51: 584.
dc.identifier.citedreferenceRose RJ, Dick DM, Viken RJ, Kaprio J. Gene–environment interaction in patterns of adolescent drinking: Regional residency moderates longitudinal influences on alcohol use. Alcohol Clin Exp Res. 2001; 25: 637 – 6.
dc.identifier.citedreferenceWilson S, Haroian K, Iacono WG, et al. Minnesota center for twin and family research. Twin Res Human Genet. 2019; 22: 746 – 52.
dc.identifier.citedreferenceMcGue M, Zhang Y, Miller MB, et al. A genome‐wide association study of behavioral disinhibition. Behav Genet. 2013; 43: 363 – 73.
dc.identifier.citedreferenceWorld Health Organization (WHO). Global Status Report on Alcohol and Health. Geneva, Switzerland: WHO; 2018.
dc.identifier.citedreferenceWorld Health Organization (WHO). WHO Report on the Global Tobacco Epidemic, 2017: Monitoring Tobacco Use and Prevention Policies. Geneva, Switzerland: WHO; 2017.
dc.identifier.citedreferenceVerhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: A meta‐analysis of twin and adoption studies. Psychol Med. 2015; 45: 1061 – 72.
dc.identifier.citedreferenceAgrawal A, Verweij KJH, Gillespie NA, Heath AC, Lessov‐Schlaggar CN, Martin NG, et al. The genetics of addiction—a translational perspective. Transl Psychiatry. 2012; 2: e140.
dc.identifier.citedreference23andMe Research Team, HUNT All‐In Psychiatry, Liu M, Jiang Y, Wedow R, Li Y, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019; 51: 237 – 44.
dc.identifier.citedreferenceQuach BC, Bray MJ, Gaddis NC, Liu M, Palviainen T, Minica CC, et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat Commun. 2020; 11. 5562. https://doi.org/10.1038/s41467-020-19265-z
dc.identifier.citedreferenceZhou H, Sealock JM, Sanchez‐Roige S, Clarke TK, Levey DF, Cheng Z, et al. Genome‐wide meta‐analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat Commun. 2020; 23: 809 – 18.
dc.identifier.citedreferenceSalvatore JE, Aliev F, Edwards AC, et al. Polygenic scores predict alcohol problems in an independent sample and show moderation by the environment. Genes. 2014; 5: 330 – 46.
dc.identifier.citedreferenceSavage JE, Salvatore JE, Aliev F, et al. Polygenic risk score prediction of alcohol dependence symptoms across population‐based and clinically ascertained samples. Alcohol Clin Exp Res. 2018; 42: 520 – 30.
dc.identifier.citedreferenceBarr PB, Ksinan A, Su J, Johnson EC, Meyers JL, Wetherill L, et al. Using polygenic scores for identifying individuals at increased risk of substance use disorders in clinical and population samples. Transl Psychiatry. 2020; 10: 196. https://doi.org/10.1038/s41398-020-00865-8
dc.identifier.citedreferenceChang L‐H, Couvy‐Duchesne B, Liu M, et al. Association between polygenic risk for tobacco or alcohol consumption and liability to licit and illicit substance use in young Australian adults. Drug Alcohol Depend. 2019; 197: 271 – 9.
dc.identifier.citedreferenceJackson KM, Sartor CE. The natural course of substance use and dependence. In: Sher KJ, editor The Oxford Handbook of Substance Use and Substance Use Disorders. New York, NY: Oxford University Press; 2016. p. 67 – 134.
dc.identifier.citedreferenceMalone SM, Taylor J, Marmorstein NR, McGue M, Iacono WG. Genetic and environmental influences on antisocial behavior and alcohol dependence from adolescence to early adulthood. Dev Psychopathol. 2004; 16: 943 – 66.
dc.identifier.citedreferenceBergen SE, Gardner CO, Kendler KS. Age‐related changes in heritability of behavioral phenotypes over adolescence and young adulthood: a meta‐analysis. Twin Res Hum Genet. 2007; 10: 423 – 33.
dc.identifier.citedreferenceVrieze SI, Hicks BM, Iacono WG, McGue M. Decline in genetic influence on the co‐occurrence of alcohol, marijuana, and nicotine dependence symptoms from age 14 to 29. Am J Psychiatry. 2012; 169: 1073 – 81.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.