Show simple item record

Properties of Ion‐Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail

dc.contributor.authorSarkango, Yash
dc.contributor.authorSlavin, James A.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorClark, George B.
dc.contributor.authorSun, Weijie
dc.contributor.authorMauk, Barry H.
dc.contributor.authorKurth, William S.
dc.contributor.authorHospodarsky, George B.
dc.date.accessioned2022-04-08T18:04:08Z
dc.date.available2023-04-08 14:04:05en
dc.date.available2022-04-08T18:04:08Z
dc.date.issued2022-03
dc.identifier.citationSarkango, Yash; Slavin, James A.; Jia, Xianzhe; DiBraccio, Gina A.; Clark, George B.; Sun, Weijie; Mauk, Barry H.; Kurth, William S.; Hospodarsky, George B. (2022). "Properties of Ion‐Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail." Journal of Geophysical Research: Space Physics 127(3): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/172017
dc.description.abstractWe expand on previous observations of magnetic reconnection in Jupiter’s magnetosphere by constructing a survey of ion‐inertial scale plasmoids in the Jovian magnetotail. We developed an automated detection algorithm to identify reversals in the Bθ ${B}_{theta }$ component and performed the minimum variance analysis for each identified plasmoid to characterize its helical structure. The magnetic field observations were complemented by data collected using the Juno Waves instrument, which is used to estimate the total electron density, and the JEDI energetic particle detectors. We identified 87 plasmoids with “peak‐to‐peak” durations between 10 and 300 s. Thirty‐one plasmoids possessed a core field and were classified as flux‐ropes. The other 56 plasmoids had minimum field strength at their centers and were termed O‐lines. Out of the 87 plasmoids, 58 had in situ signatures shorter than 60 s, despite the algorithm’s upper limit being 300 s, suggesting that smaller plasmoids with shorter durations were more likely to be detected by Juno. We estimate the diameter of these plasmoids assuming a circular cross section and a travel speed equal to the Alfven speed in the surrounding lobes. Using the electron density inferred by Waves, we contend that these plasmoid diameters were within an order of the local ion‐inertial length. Our results demonstrate that magnetic reconnection in the Jovian magnetotail occurs at ion scales like in other space environments. We show that ion‐scale plasmoids would need to be released every 0.1 s or less to match the canonical 1 ton/s rate of plasma production due to Io.Key PointsWe identify and analyze 87 ion‐inertial scale plasmoids (56 O‐lines, 31 flux‐ropes) in the Jovian magnetotail using an automated algorithmNorth‐South field reversals with peak‐to‐peak durations less than 60 s are more common than those with durations between 60 and 300 sIon‐inertial scale plasmoids alone cannot account for the >500 kg/s loss‐rate deficit unless they are being produced every ∼0.1 s or less
dc.publisherWiley Periodicals, Inc.
dc.publisherSOM.PDF
dc.subject.otherJupiter magnetosphere
dc.subject.otherJupiter magnetotail
dc.subject.otherplasmoid
dc.subject.otherflux‐rope
dc.subject.otherion‐inertial
dc.subject.otherJuno
dc.titleProperties of Ion‐Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172017/1/jgra57064_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172017/2/jgra57064.pdf
dc.identifier.doi10.1029/2021JA030181
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRussell, C. T., Khurana, K. K., Huddleston, D. E., & Kivelson, M. G. ( 1998 ). Localized reconnection in the near Jovian magnetotail. Science, 280 ( 5366 ), 1061 – 1064. https://doi.org/10.1126/science.280.5366.1061
dc.identifier.citedreferenceMauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. ( 2013 ). The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213213 ( 11 ), 289 – 346. https://doi.org/10.1007/S11214-013-0025-3
dc.identifier.citedreferenceMauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., et al. ( 2004 ). Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. Journal of Geophysical Research, 109 ( A9 ). https://doi.org/10.1029/2003JA010270
dc.identifier.citedreferenceMcComas, D. J., Allegrini, F., Bagenal, F., Crary, F., Ebert, R. W., Elliott, H., et al. ( 2007 ). Diverse plasma populations and structures in Jupiter’s magnetotail. Science, 318 ( 5848 ), 217 – 220. https://doi.org/10.1126/science.1147393
dc.identifier.citedreferenceMcNutt, R. L., Haggerty, D. K., Hill, M. E., Krimigis, S. M., Livi, S., Ho, G. C., et al. ( 2007 ). Energetic particles in the Jovian magnetotail. Science, 318 ( 5848 ), 220 – 222. SOM.PDF. https://doi.org/10.1126/SCIENCE.1148025/SUPPL_FILE/MCNUTT
dc.identifier.citedreferenceMoldwin, M. B., & Hughes, W. J. ( 1992 ). On the formation and evolution of plasmoids: A survey of ISEE 3 geotail data. Journal of Geophysical Research, 97 ( A12 ), 19259 – 19282. https://doi.org/10.1029/92JA01598
dc.identifier.citedreferenceNewville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. ( 2014 ). LMFIT: Non‐linear least‐square minimization and curve‐fitting for Python (0.8.0). Zenodo. https://doi.org/10.5281/zenodo.11813
dc.identifier.citedreferenceNishida, A. ( 1983 ). Reconnection in the Jovian magnetosphere. Geophysical Research Letters, 10 ( 6 ), 451 – 454. https://doi.org/10.1029/GL010i006p00451
dc.identifier.citedreferencePriest, E. R. ( 2011 ). The equilibrium of magnetic flux ropes (tutorial lecture). In C. T. Russell, E. R. Priest, & L. C. Lee (Eds.), Physics of magnetic flux ropes (pp. 1 – 22 ). https://doi.org/10.1029/gm058p0001
dc.identifier.citedreferenceRosa Oliveira, R. A., da Silva Oliveira, M. W., Ojeda‐González, A., & De La Luz, V. ( 2020 ). New metric for minimum variance analysis validation in the study of interplanetary magnetic clouds. Solar Physics, 295 ( 3 ), 45. https://doi.org/10.1007/s11207-020-01610-6
dc.identifier.citedreferenceSarkango, Y., Jia, X., & Toth, G. ( 2019 ). Global MHD simulations of the response of Jupiter’s magnetosphere and ionosphere to changes in the solar wind and IMF. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5317 – 5341. https://doi.org/10.1029/2019JA026787
dc.identifier.citedreferenceSarkango, Y., Slavin, J. A., Jia, X., DiBraccio, G. A., Gershman, D. J., Connerney, J. E. P., et al. ( 2021 ). Juno observations of ion‐inertial scale flux ropes in the jovian magnetotail. Geophysical Research Letters, 48 ( 2 ). https://doi.org/10.1029/2020GL089721
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Craven, J. D., Elphic, R. C., Fairfield, D. H., Frank, L. A., et al. ( 1989 ). CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. Journal of Geophysical Research, 94 ( A11 ), 15153. https://doi.org/10.1029/ja094ia11p15153
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., et al. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ). https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Fear, R. C., Poh, G. K., DiBraccio, G. A., et al. ( 2017 ). Automated force‐free flux rope identification. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 780 – 791. https://doi.org/10.1002/2016JA022994
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Poh, G. K., & Fear, R. C. ( 2017 ). Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 122 ( 8 ), 8136 – 8153. https://doi.org/10.1002/2017JA024295
dc.identifier.citedreferenceTaylor, J. B. ( 1974 ). Relaxation of toroidal plasma and generation of reverse magnetic fields. Physical Review Letters, 33 ( 19 ), 1139 – 1141. https://doi.org/10.1103/PhysRevLett.33.1139
dc.identifier.citedreferenceVaivads, A., Khotyaintsev, Y. V., Retinò, A., Fu, H. S., Kronberg, E. A., & Daly, P. W. ( 2021 ). Cluster observations of energetic electron acceleration within earthward reconnection jet and associated magnetic flux rope. Journal of Geophysical Research: Space Physics, 126 ( 8 ), 1 – 13. https://doi.org/10.1029/2021ja029545
dc.identifier.citedreferenceVasyliunas, V. M. ( 1983 ). Plasma distribution and flow. In Physics of the Jovian magnetosphere (pp. 395 – 453 ). https://doi.org/10.1017/cbo9780511564574.013
dc.identifier.citedreferenceVogt, M. F., Bunce, E. J., Nichols, J. D., Clarke, J. T., & Kurth, W. S. ( 2017 ). Long‐term variability of Jupiter’s magnetodisk and implications for the aurora. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 12090 – 12110. https://doi.org/10.1002/2017JA024066
dc.identifier.citedreferenceVogt, M. F., Connerney, J. E. P., DiBraccio, G. A., Wilson, R. J., Thomsen, M. F., Ebert, R. W., et al. ( 2020 ). Magnetotail reconnection at Jupiter: A survey of Juno magnetic field observations. Journal of Geophysical Research: Space Physics, 125 ( 3 ). https://doi.org/10.1029/2019JA027486
dc.identifier.citedreferenceVogt, M. F., Jackman, C. M., Slavin, J. A., Bunce, E. J., Cowley, S. W. H., Kivelson, M. G., & Khurana, K. K. ( 2014 ). Structure and statistical properties of plasmoids in Jupiter’s magnetotail. Journal of Geophysical Research ‐ A: Space Physics, 119 ( 2 ), 821 – 843. https://doi.org/10.1002/2013JA019393
dc.identifier.citedreferenceVogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. ( 2010 ). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115 ( 6 ). https://doi.org/10.1029/2009JA015098
dc.identifier.citedreferenceWoch, J., Krupp, N., Khurana, K. K., Kivelson, M. G., Roux, A., Perraut, S., et al. ( 1999 ). Plasma sheet dynamics in the Jovian magnetotail: Signatures for substorm‐like processes. Geophysical Research Letters, 26 ( 14 ), 2137 – 2140. https://doi.org/10.1029/1999GL900493
dc.identifier.citedreferenceWoch, J., Krupp, N., & Lagg, A. ( 2002 ). Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line. Geophysical Research Letters, 29 ( 7 ), 42‐1 – 42‐4. https://doi.org/10.1029/2001GL014080
dc.identifier.citedreferenceWoch, J., Krupp, N., Lagg, A., Wilken, B., Livi, S., & Williams, D. J. ( 1998 ). Quasi‐periodic modulations of the Jovian magnetotail. Geophysical Research Letters, 25 ( 8 ), 1253 – 1256. https://doi.org/10.1029/98GL00861
dc.identifier.citedreferenceYao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. ( 2020 ). Reconnection‐ and dipolarization‐driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125 ( 8 ). https://doi.org/10.1029/2019JA027663
dc.identifier.citedreferenceYao, Z. H., Grodent, D., Kurth, W. S., Clark, G., Mauk, B. H., Kimura, T., et al. ( 2019 ). On the relation between Jovian aurorae and the loading/unloading of the magnetic flux: Simultaneous measurements from Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 46 ( 21 ), 11632 – 11641. https://doi.org/10.1029/2019GL084201
dc.identifier.citedreferenceZhong, Z. H., Zhou, M., Tang, R. X., Deng, X. H., Turner, D. L., Cohen, I. J., et al. ( 2020 ). Direct evidence for electron acceleration within ion‐scale flux rope. Geophysical Research Letters, 47 ( 1 ), e2019GL085141. https://doi.org/10.1029/2019GL085141
dc.identifier.citedreferenceZimbardo, G. ( 1993 ). Observable implications of tearing‐mode instability in Jupiter’s nightside magnetosphere. Planetary and Space Science, 41 ( 5 ), 357 – 361. https://doi.org/10.1016/0032-0633(93)90069-E
dc.identifier.citedreferenceZong, Q. G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., et al. ( 2004 ). Cluster observations of earthward flowing plasmoid in the tail. Geophysical Research Letters, 31 ( 18 ), 18803. https://doi.org/10.1029/2004GL020692
dc.identifier.citedreferenceArtemyev, A. V., Clark, G., Mauk, B., Vogt, M. F., & Zhang, X. J. ( 2020 ). Juno observations of heavy ion energization during transient dipolarizations in Jupiter magnetotail. Journal of Geophysical Research: Space Physics, 125 ( 5 ), 1 – 14. https://doi.org/10.1029/2020JA027933
dc.identifier.citedreferenceArtemyev, A. V., Kasahara, S., Ukhorskiy, A. Y., & Fujimoto, M. ( 2013 ). Acceleration of ions in the Jupiter magnetotail: Particle resonant interaction with dipolarization fronts. Planetary and Space Science, 82–83, 134 – 148. https://doi.org/10.1016/j.pss.2013.04.013
dc.identifier.citedreferenceBagenal, F. ( 2007 ). The magnetosphere of Jupiter: Coupling the equator to the poles. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 3 ), 387 – 402. https://doi.org/10.1016/j.jastp.2006.08.012
dc.identifier.citedreferenceBagenal, F., & Delamere, P. A. ( 2011 ). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116 ( 5 ). https://doi.org/10.1029/2010JA016294
dc.identifier.citedreferenceBarnhart, B. L., Kurth, W. S., Groene, J. B., Faden, J. B., Santolik, O., & Gurnett, D. A. ( 2009 ). Electron densities in Jupiter’s outer magnetosphere determined from Voyager 1 and 2 plasma wave spectra. Journal of Geophysical Research, 114 ( 5 ), 5218. https://doi.org/10.1029/2009JA014069
dc.identifier.citedreferenceConnerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. ( 2017 ). The Juno magnetic field investigation. Space Science Reviews, 213, 39 – 138. https://doi.org/10.1007/s11214-017-0334-z
dc.identifier.citedreferenceCowley, S. W. H. ( 1981 ). Magnetospheric asymmetries associated with the y‐component of the IMF. Planetary and Space Science, 29 ( 1 ), 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0
dc.identifier.citedreferenceCowley, S. W. H., Nichols, J. D., & Jackman, C. M. ( 2015 ). Down‐tail mass loss by plasmoids in Jupiter’s and Saturn’s magnetospheres. Journal of Geophysical Research ‐ A: Space Physics, 120 ( 8 ), 6347 – 6356. https://doi.org/10.1002/2015JA021500
dc.identifier.citedreferenceDelamere, P. A., & Bagenal, F. ( 2013 ). Magnetotail structure of the giant magnetospheres: Implications of the viscous interaction with the solar wind. Journal of Geophysical Research, 118 ( 11 ), 7045 – 7053. https://doi.org/10.1002/2013JA019179
dc.identifier.citedreferenceDrake, J. F., Swisdak, M., Che, H., & Shay, M. A. ( 2006 ). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443 ( 7111 ), 553 – 556. https://doi.org/10.1038/nature05116
dc.identifier.citedreferenceGarton, T. M., Jackman, C. M., & Smith, A. W. ( 2021 ). Kronian magnetospheric reconnection statistics across Cassini’s lifetime. Journal of Geophysical Research: Space Physics, 126 ( 8 ), e2021JA029361. https://doi.org/10.1029/2021JA029361
dc.identifier.citedreferenceGe, Y. S., Jian, L. K., & Russell, C. T. ( 2007 ). Growth phase of Jovian substorms. Geophysical Research Letters, 34 ( 23 ), 1 – 6. https://doi.org/10.1029/2007GL031987
dc.identifier.citedreferenceGe, Y. S., Russell, C. T., & Khurana, K. K. ( 2010 ). Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planetary and Space Science, 58 ( 11 ), 1455 – 1469. https://doi.org/10.1016/j.pss.2010.06.013
dc.identifier.citedreferenceGrigorenko, E. E., Malykhin, A. Y., Kronberg, E. A., Malova, K. V., & Daly, P. W. ( 2015 ). Acceleration of ions to suprathermal energies by turbulence in the plasmoid‐like magnetic structures. Journal of Geophysical Research ‐ A: Space Physics, 120 ( 8 ), 6541 – 6558. https://doi.org/10.1002/2015JA021314
dc.identifier.citedreferenceGurnett, D. A., Scarf, F. L., Kurth, W. S., Shaw, R. R., & Poynter, R. L. ( 1981 ). Determination of Jupiter’s electron density profile from plasma wave observations. Journal of Geophysical Research, 86 ( A10 ), 8199 – 8212. https://doi.org/10.1029/JA086IA10P08199
dc.identifier.citedreferenceHu, Q., Zheng, J., Chen, Y., le Roux, J., & Zhao, L. ( 2018 ). Automated detection of small‐scale magnetic flux ropes in the solar wind: First results from the wind spacecraft measurements. The Astrophysical Journal ‐ Supplement Series, 239 ( 1 ), 12. https://doi.org/10.3847/1538-4365/aae57d
dc.identifier.citedreferenceHuscher, E., Bagenal, F., Wilson, R. J., Allegrini, F., Ebert, R. W., Valek, P. W., et al. ( 2021 ). Survey of Juno observations in Jupiter’s plasma disk: Density. Journal of Geophysical Research: Space Physics, 126 ( 8 ), e2021JA029446. https://doi.org/10.1029/2021JA029446
dc.identifier.citedreferenceJackman, C. M., Slavin, J. A., & Cowley, S. W. H. ( 2011 ). Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. Journal of Geophysical Research, 116. https://doi.org/10.1029/2011JA016682
dc.identifier.citedreferenceJia, X., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Tóth, G., Dezeeuw, D. L., & Ridley, A. J. ( 2012 ). Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. Journal of Geophysical Research, 117 ( 5 ). https://doi.org/10.1029/2012JA017575
dc.identifier.citedreferenceJoy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Ogino, T. ( 2002 ). Probabilistic models of the Jovian magnetopause and bow shock locations. Journal of Geophysical Research, 107 ( A10 ). https://doi.org/10.1029/2001JA009146
dc.identifier.citedreferenceKasahara, S., Kronberg, E. A., Kimura, T., Tao, C., Badman, S. V., Masters, A., et al. ( 2013 ). Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. Journal of Geophysical Research: Space Physics, 118 ( 1 ), 375 – 384. https://doi.org/10.1029/2012JA018130
dc.identifier.citedreferenceKhurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., et al. ( 2004 ). The configuration of Jupiter’s magnetosphere (Chapter 24). Jupiter: The planet, satellites and magnetosphere..
dc.identifier.citedreferenceKivelson, M. G., & Khurana, K. K. ( 1995 ). Models of flux ropes embedded in a Harris neutral sheet: Force‐free solutions in low and high beta plasmas. Journal of Geophysical Research, 100 ( A12 ), 23637. https://doi.org/10.1029/95ja01548
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 2005 ). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. Journal of Geophysical Research, 110 ( A12 ). https://doi.org/10.1029/2005JA011176
dc.identifier.citedreferenceKrimigis, S. M., Carbary, J. F., Keath, E. P., Bostrom, C. O., Axford, W. I., Gloeckler, G., et al. ( 1981 ). Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft. Journal of Geophysical Research, 86 ( A10 ), 8227 – 8257. https://doi.org/10.1029/JA086IA10P08227
dc.identifier.citedreferenceKronberg, E. A., Glassmeier, K. H., Woch, J., Krupp, N., Lagg, A., & Dougherty, M. K. ( 2007 ). A possible intrinsic mechanism for the quasi‐periodic dynamics of the Jovian magnetosphere. Journal of Geophysical Research: Space Physics, 112 ( 5 ), a – n. https://doi.org/10.1029/2006JA011994
dc.identifier.citedreferenceKronberg, E. A., Grigorenko, E. E., Malykhin, A., Kozak, L., Petrenko, B., Vogt, M. F., et al. ( 2019 ). Acceleration of ions in Jovian plasmoids: Does turbulence play a role? Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5056 – 5069. https://doi.org/10.1029/2019JA026553
dc.identifier.citedreferenceKronberg, E. A., Woch, J., Krupp, N., & Lagg, A. ( 2008 ). Mass release process in the Jovian magnetosphere: Statistics on particle burst parameters. Journal of Geophysical Research, 113 ( 10 ). https://doi.org/10.1029/2008JA013332
dc.identifier.citedreferenceKronberg, E. A., Woch, J., Krupp, N., Lagg, A., Daly, P. W., & Korth, A. ( 2008 ). Comparison of periodic substorms at Jupiter and Earth. Journal of Geophysical Research, 113 ( 4 ), 1 – n. https://doi.org/10.1029/2007JA012880
dc.identifier.citedreferenceSonnerup, B. U. Ö., & Cahill, L. J. ( 1967 ). Magnetopause structure and attitude from Explorer 12 observations. Journal of Geophysical Research, 72 ( 1 ), 171. https://doi.org/10.1029/jz072i001p00171
dc.identifier.citedreferenceKronberg, E. A., Woch, J., Krupp, N., Lagg, A., Khurana, K. K., & Glassmeier, K. H. ( 2005 ). Mass release at Jupiter: Substorm‐like processes in the jovian magnetotail. Journal of Geophysical Research, 110 ( A3 ), 1 – 10. https://doi.org/10.1029/2004JA010777
dc.identifier.citedreferenceKrupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., et al. ( 2004 ). Dynamics of the Jovian magnetosphere. Jupiter. The planet, satellites and magnetosphere (pp. 617 – 638 ).
dc.identifier.citedreferenceKrupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., & Williams, D. J. ( 1998 ). Energetic particle bursts in the predawn Jovian magnetotail. Geophysical Research Letters, 25 ( 8 ), 1249 – 1252. https://doi.org/10.1029/98GL00863
dc.identifier.citedreferenceKurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. ( 2017 ). The Juno waves investigation. Space Science Reviews, 213, 347 – 392. https://doi.org/10.1007/s11214-017-0396-y
dc.identifier.citedreferenceLepping, R. P., Jones, J. A., & Burlaga, L. F. ( 1990 ). Magnetic field structure of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research, 95 ( A8 ), 11957. https://doi.org/10.1029/ja095ia08p11957
dc.identifier.citedreferenceMasters, A. ( 2017 ). Model‐based assessments of magnetic reconnection and Kelvin‐Helmholtz instability at Jupiter’s magnetopause. Journal of Geophysical Research: Space Physics, 122 ( 11 ), 11154 – 11174. https://doi.org/10.1002/2017JA024736
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.