Show simple item record

Organisation of the musculature of the rat stomach

dc.contributor.authorDi Natale, Madeleine R.
dc.contributor.authorPatten, Lauren
dc.contributor.authorMolero, Juan C.
dc.contributor.authorStebbing, Martin J.
dc.contributor.authorHunne, Billie
dc.contributor.authorWang, Xiaokai
dc.contributor.authorLiu, Zhongming
dc.contributor.authorFurness, John B.
dc.date.accessioned2022-04-08T18:04:30Z
dc.date.available2023-05-08 14:04:28en
dc.date.available2022-04-08T18:04:30Z
dc.date.issued2022-04
dc.identifier.citationDi Natale, Madeleine R.; Patten, Lauren; Molero, Juan C.; Stebbing, Martin J.; Hunne, Billie; Wang, Xiaokai; Liu, Zhongming; Furness, John B. (2022). "Organisation of the musculature of the rat stomach." Journal of Anatomy (4): 711-723.
dc.identifier.issn0021-8782
dc.identifier.issn1469-7580
dc.identifier.urihttps://hdl.handle.net/2027.42/172023
dc.description.abstractThe strengths, directions and coupling of the movements of the stomach depend on the organisation of its musculature. Although the rat has been used as a model species to study gastric function, there is no detailed, quantitative study of the arrangement of the gastric muscles in rat. Here we provide a descriptive and quantitative account, and compare it with human gastric anatomy. The rat stomach has three components of the muscularis externa, a longitudinal coat, a circular coat and an internal oblique (sling) muscle in the region of the gastro–oesophageal junction. These layers are similar to human. Unlike human, the rat stomach is also equipped with paired muscular oesophago‐pyloric ligaments that lie external to the longitudinal muscle. There is a prominent muscularis mucosae throughout the stomach and strands of smooth muscle occur in the mucosa, between the glands of the corpus and antrum. The striated muscle of the oesophageal wall reaches to the stomach, unlike the human, in which the wall of the distal oesophagus is smooth muscle. Thus, the continuity of gastric and oesophageal smooth muscle bundles, that occurs in human, does not occur in rat. Circular muscle bundles extend around the circumference of the stomach, in the fundus forming a cap of parallel muscle bundles. This arrangement favours co‐ordinated circumferential contractions. Small bands of muscle make connections between the circular muscle bundles. This is consistent with a slower conduction of excitation orthogonal to the circular muscle bundles, across the corpus towards the distal antrum. The oblique muscle merged and became continuous with the circular muscle close to the gastro–oesophageal junction at the base of the fundus, and in the corpus, lateral to the lesser curvature. Quantitation of muscle thickness revealed gradients of thickness of both the longitudinal and circular muscle. This anatomical study provides essential data for interpreting gastric movements.The muscles of the rat stomach, their directions and relationships. The external muscle of the rat stomach has two complete layers, the longitudinal and circular layers and an incomplete layer, the oblique muscle. It also has a muscularis mucosae, not illustrated, that lies adjacent to the lining mucosa throughout the stomach, and paired muscular ligaments, the oesophago–pyloric ligaments.
dc.publisherWiley Periodicals, Inc.
dc.publisherEdward Arnold
dc.subject.othersmooth muscle
dc.subject.otherantrum
dc.subject.othercorpus
dc.subject.otherfundus
dc.subject.othergastric ligaments
dc.subject.othergastric motility
dc.titleOrganisation of the musculature of the rat stomach
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172023/1/joa13587.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172023/2/joa13587_am.pdf
dc.identifier.doi10.1111/joa.13587
dc.identifier.sourceJournal of Anatomy
dc.identifier.citedreferencePowley, T.L., Gilbert, J.M., Baronowsky, E.A., Billingsley, C.N., Martin, F.N. & Phillips, R.J. ( 2012 ) Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro‐esophageal reflux disease? Neurogastroenterology and Motility, 24, e526 – e537.
dc.identifier.citedreferenceGrider, J.R. ( 2003 ) Reciprocal activity of longitudinal and circular muscle during intestinal peristaltic reflex. American Journal of Physiology, 284, G768 – G775.
dc.identifier.citedreferenceGruber, H. ( 1968 ) Structure and innervation of the striated muscle fibres of the esophagus of the rat. Zeitschrift Für Zellforschung, 91, 236 – 247.
dc.identifier.citedreferenceHur, M.‐S. ( 2020 ) Muscular architecture of the abdominal part of the esophagus and the stomach. Clinical Anatomy, 33, 530 – 537.
dc.identifier.citedreferenceJaffey, D.M., Chesney, L. & Powley, T.L. ( 2021 ) Stomach serosal arteries distinguish gastric regions of the rat. Journal of Anatomy, 239, 903 – 912.
dc.identifier.citedreferenceKeller, J., Bassotti, G., Clarke, J., Dinning, P., Fox, M., Grover, M. et al. ( 2018 ) Advances in the diagnosis and classification of gastric and intestinal motility disorders. Nature Reviews Gastroenterology & Hepatology, 15, 291 – 308.
dc.identifier.citedreferenceLammers, W.J.E.P., Ver Donck, L., Stephen, B., Smets, D., Schuurkes, J. A. J. ( 2009 ) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. American Journal of Physiology‐Gastrointestinal and Liver Physiology, 296, G1200 – G1210.
dc.identifier.citedreferenceLentle, R.G., Janssen, P.W.M., Goh, K., Chambers, P. & Hulls, C. ( 2010 ) Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Digestive Diseases and Sciences, 55, 3349 – 3360.
dc.identifier.citedreferenceLentle, R.G., Reynolds, G.W., Hulls, C.M. & Chambers, J.P. ( 2016 ) Advanced spatiotemporal mapping methods give new insights into the coordination of contractile activity in the stomach of the rat. American Journal of Physiology‐Gastrointestinal and Liver Physiology, 311, G1064 – G1075.
dc.identifier.citedreferenceLu, K.‐H., Cao, J., Thomas Oleson, S., Powley, T.L. & Liu, Z. ( 2017 ) Contrast‐enhanced magnetic resonance imaging of gastric emptying and motility in rats. IEEE Transactions on Biomedical Engineering, 64, 2546 – 2554.
dc.identifier.citedreferenceMcswiney, B.A. ( 1929 ) The structure and movements of the cardia. Quarterly Journal of Experimental Physiology, 19, 237 – 241.
dc.identifier.citedreferenceMittal, R.K., Liu, J., Puckett, J.L., Bhalla, V., Bhargava, V., Tipnis, N. et al. ( 2005 ) Sensory and motor function of the esophagus: lessons from ultrasound imaging. Gastroenterology, 128, 487 – 497.
dc.identifier.citedreferenceMontedonico, S., Godoy, J., Mate, A., Possögel, A.K., Diez‐Pardo, J.A. & Tovar, J.A. ( 1999 ) Muscular architecture and manometric image of gastroesophageal barrier in the rat. Digestive Diseases and Sciences, 44, 2449 – 2455.
dc.identifier.citedreferenceMorris, J.L., Gibbins, I.L., Campbell, G., Murphy, R., Furness, J.B. & Costa, M. ( 1986 ) Innervation of the large arteries and heart of the toad Bufo marinus by adrenergic and peptide‐containing neurons. Cell and Tissue Research, 243, 171 – 184.
dc.identifier.citedreferenceNeuhuber, W.L., Kressel, M., Stark, A. & Berthoud, H.‐R. ( 1998 ) Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. Journal of the Autonomic Nervous System, 70, 92 – 102.
dc.identifier.citedreferencePowley, T.L., Jaffey, D.M., Mcadams, J., Baronowsky, E.A., Black, D., Chesney, L. et al. ( 2019 ) Vagal innervation of the stomach reassessed: brain‐gut connectome uses smart terminals. Annals of the New York Academy of Sciences, 1454, 14 – 30.
dc.identifier.citedreferenceRoman, C. ( 1982 ) Nervous control of esophageal and gastric motility. In: Bertaccini, G. (Ed.) Handbook of experimental pharmacology: mediators and drugs in gastrointestinal motility. Berlin: Springer‐Verlag.
dc.identifier.citedreferenceSanders, K.M. & Publicover, N.G. ( 1989 ) Electrophysiology of the gastric musculature. In: Wood, J.D. (Ed.) Handbook of physiology: the gastrointestinal system, 2nd edition. Baltimore, MD: American Physiology Society.
dc.identifier.citedreferenceSarna, S.K. ( 1993 ) Gastrointestinal longitudinal muscle contractions. American Journal of Physiology, 265, G156 – G164.
dc.identifier.citedreferenceSmith, T.K. & Robertson, W.J. ( 1998 ) Synchronous movements of the longitudinal and circular muscle during peristalsis in the isolated guinea‐pig distal colon. Journal of Physiology (London), 506, 563 – 577.
dc.identifier.citedreferenceSpalteholz, W. ( 1906 ) Hand‐atlas of human anatomy: edited and translated from the 4th German edition by Lewellys F. Barker. Philadelphia: Lippincott.
dc.identifier.citedreferenceStandring, S. ( 2016 ) Gray’s anatomy: the anatomical basis of clinical practice. New York: Elsevier/Churchill Livingstone.
dc.identifier.citedreferenceStein, H.J., Liebermann‐Meffert, D., Demeester, T.R. & Siewert, J.R. ( 1995 ) Three‐dimensional pressure image and muscular structure of the human lower esophageal sphincter. Surgery, 117, 692 – 698.
dc.identifier.citedreferenceStevens, R.J., Publicover, N.G. & Smith, T.K. ( 2000 ) Propagation and neural regulation of calcium waves in longitudinal and circular muscle layers of guinea pig small intestine. Gastroenterology, 118, 892 – 904.
dc.identifier.citedreferenceSuzuki, N., Prosser, C.L. & Dahms, V. ( 1986 ) Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. American Journal of Physiology, 250, G287 – G294.
dc.identifier.citedreferenceSynnerstad, I., Ekblad, E., Sundler, F. & Holm, L. ( 1998 ) Gastric mucosal smooth muscles may explain oscillations in glandular pressure: role of vasoactive intestinal peptide. Gastroenterology, 114, 284 – 294.
dc.identifier.citedreferenceTack, J. & Pandolfino, J.E. ( 2018 ) Pathophysiology of gastroesophageal reflux disease. Gastroenterology, 154, 277 – 288.
dc.identifier.citedreferenceTrendelenburg, P. ( 1917 ) Physiologische und pharmakologische Versuche über die Dünndarmperistaltik. Archiv für experimentelle Pathologie und Pharmakologie, 81, 55 – 129.
dc.identifier.citedreferenceWilliamson, S., Pompolo, S. & Furness, J.B. ( 1996 ) GABA and nitric oxide synthase immunoreactivities are colocalized in a subset of inhibitory motor neurons of the guinea‐pig small intestine. Cell and Tissue Research, 284, 29 – 37.
dc.identifier.citedreferenceZifan, A., Kumar, D., Cheng, L.K. & Mittal, R.K. ( 2017 ) Three‐dimensional myoarchitecture of the lower esophageal sphincter and esophageal hiatus using optical sectioning microscopy. Scientific Reports, 7, 13188.
dc.identifier.citedreferenceAlvarez, W.C. & Mahoney, L.J. ( 1922 ) Action currents in stomach and intestine. American Journal of Physiology, 58, 476 – 493.
dc.identifier.citedreferenceArai, K., Ota, H., Hidaka, E., Hayama, M., Sano, K., Sugiyama, A. et al. ( 2004 ) Histochemical, ultrastructural, and three‐dimensional observation of smooth muscle cells in human gastric mucosa. Histochemistry and Cell Biology, 121, 229 – 237.
dc.identifier.citedreferenceBayliss, W.M. & Starling, E.H. ( 1899 ) The movements and innervation of the small intestine. Journal of Physiology (London), 24, 99 – 143.
dc.identifier.citedreferenceCannon, W.B. ( 1898 ) The movements of the stomach studied by means of the Roentgen rays. American Journal of Physiology, 1, 359 – 382.
dc.identifier.citedreferenceCannon, W.B. ( 1902 ) The movements of the intestines studied by means of the Roentgen rays. American Journal of Physiology, 6, 251 – 277.
dc.identifier.citedreferenceCannon, W.B. ( 1911 ) The mechanical factors of digestion. London: Edward Arnold.
dc.identifier.citedreferenceCannon, W.B. ( 1912 ) Peristalsis, segmentation and the myenteric reflex. American Journal of Physiology, 30, 114 – 128.
dc.identifier.citedreferenceCheng, L.K., Nagahawatte, N.D., Avci, R., Du, P., Liu, Z. & Paskaranandavadivel, N. ( 2021 ) Strategies to refine gastric stimulation and pacing protocols: experimental and modeling approaches. Frontiers in Neuroscience, 15, 645472.
dc.identifier.citedreferenceDi Natale, M.R., Stebbing, M.J. & Furness, J.B. ( 2021 ) Autonomic neuromuscular junctions. Autonomic Neuroscience, Basic and Clinical, 234, 1 – 7.
dc.identifier.citedreferenceDu, P., O’Grady, G., Gao, J., Sathar, S. & Cheng, L.K. ( 2013 ) Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5, 481 – 493.
dc.identifier.citedreferenceFurness, J.B. ( 2006 ) The enteric nervous system. Oxford: Blackwell.
dc.identifier.citedreferenceFurness, J.B., Di Natale, M., Hunne, B., Oparija‐Rogenmozere, L., Ward, S.M., Sasse, K.C. et al. ( 2020 ) The identification of neuronal control pathways supplying effector tissues in the stomach. Cell and Tissue Research, 382, 433 – 445.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.