Show simple item record

Wind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest

dc.contributor.authorAnoszko, Elias
dc.contributor.authorFrelich, Lee E.
dc.contributor.authorRich, Roy L.
dc.contributor.authorReich, Peter B.
dc.date.accessioned2022-04-08T18:04:53Z
dc.date.available2023-04-08 14:04:50en
dc.date.available2022-04-08T18:04:53Z
dc.date.issued2022-03
dc.identifier.citationAnoszko, Elias; Frelich, Lee E.; Rich, Roy L.; Reich, Peter B. (2022). "Wind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest." Ecosphere 13(3): n/a-n/a.
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/2027.42/172031
dc.description.abstractUnder a warming climate, the southern boreal forest of North America is expected to see a doubling in fire frequency and potential for increased wind disturbance over the next century. Although boreal forests are often considered fire‐adapted, projected increases in disturbance frequency will likely result in novel combinations of disturbances with severities and impacts on community composition outside historic norms. Using a network of repeatedly measured vegetation monitoring plots, we followed changes in tree community composition in areas of the Boundary Waters Canoe Area Wilderness (BWCAW), in Minnesota, USA, experiencing disturbances ranging from severe windstorms or wildfires to areas affected by wind followed by fire or multiple fires within a short period of time. Using nonmetric multidimensional scaling ordination, hierarchical cluster analysis, and permutational analysis of variance, we compared successional pathways across different disturbance types and combinations to test whether multiple disturbances had altered successional pathways or caused greater convergence relative to single disturbances. We found that multiple disturbances often resulted in strong shifts toward wind‐dispersed early‐successional tree species, while single disturbances tended to have multiple successional pathways that favored both late‐ and early‐successional species. All disturbances in our study resulted in significant shifts in composition, but we generally failed to find statistical evidence of changes in community dispersion. Although boreal forests appear to be somewhat resilient to multiple disturbance events, multiple disturbances resulted in post‐disturbance tree communities that were heavily dominated by disturbance‐adapted deciduous trees at the expense of conifers. Our results demonstrate that multiple disturbances are capable of altering successional pathways relative to single disturbance events and that increasingly frequent disturbances are likely to alter boreal forest structure and composition, perhaps leading to a forest region strikingly unlike that of today.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercompound disturbances
dc.subject.otherforest fire
dc.subject.otherforest succession
dc.subject.otherBoundary Waters Canoe Area Wilderness
dc.subject.othersuccessional pathways
dc.subject.otherclimate change
dc.subject.otherMinnesota
dc.titleWind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172031/1/ecs23952.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172031/2/ecs23952-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172031/3/ecs23952_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172031/4/ecs23952-sup-0002-AppendixS2.pdf
dc.identifier.doi10.1002/ecs2.3952
dc.identifier.sourceEcosphere
dc.identifier.citedreferenceOhmann, L.F., and R.R. Ream. 1971. “Virgin Plant Communities of the Boundary Waters Canoe Area.” USDA Forest Service. North Central Forest Experiment Station. Research Paper NC‐63.
dc.identifier.citedreferenceOhmann, L.F., and D.F. Grigal. 1979. “ Early Revegetation and Nutrient Dynamics Following the 1971 Little Sioux Forest Fire in Northeastern Minnesota.” Forest Science 25: a0001 – z0001.
dc.identifier.citedreferenceOhmann, L.F., and D.F. Grigal. 1981. “ Contrasting Vegetation Responses Following Two Forest Fires in Northeastern Minnesota.” American Midland Naturalist: 106: 54 – 64.
dc.identifier.citedreferenceOksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, and H. Wagner. 2013. “Package ‘vegan’.” Community Ecology Package, Version 2.
dc.identifier.citedreferencePaine, R.T., M.J. Tegner, and E.A. Johnson. 1998. “ Compounded Perturbations Yield Ecological Surprises.” Ecosystems 1: 535 – 45.
dc.identifier.citedreferencePan, Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, et al. 2011. “ A Large and Persistent Carbon Sink in the World’s Forests RID A‐1523‐2011 RID E‐9419‐2010.” Science 333: 988 – 93.
dc.identifier.citedreferencePeterson, C.J. 2000. “ Catastrophic Wind Damage to North American Forests and the Potential Impact of Climate Change.” Science of the Total Environment 262: 287 – 311.
dc.identifier.citedreferencePeterson, C.J., and A.D. Leach. 2008. “ Limited Salvage Logging Effects on Forest Regeneration after Moderate‐Severity Windthrow.” Ecological Applications 18: 407 – 20.
dc.identifier.citedreferenceReich, P.B., K.M. Sendall, K. Rice, R.L. Rich, A. Stefanski, S.E. Hobbie, and R.A. Montgomery. 2015. “ Geographic Range Predicts Photosynthetic and Growth Response to Warming in Co‐Occurring Tree Species.” Nature Climate Change 5: 148 – 52.
dc.identifier.citedreferenceReich, P.B., K.M. Sendall, A. Stefanski, R.L. Rich, S.E. Hobbie, and R.A. Montgomery. 2018. “ Effects of Climate Warming on Photosynthesis in Boreal Tree Species Depend on Soil Moisture.” Nature 562: 263 – 7.
dc.identifier.citedreferenceRich, R.L., 2005. “Large Wind Disturbance in the Boundary Waters Canoe Area Wilderness. Forest Dynamics and Development Changes Associated with the July 4th 1999 Windstorm.” PhD diss., University of Minnesota.
dc.identifier.citedreferenceRich, R.L., L.E. Frelich, and P.B. Reich. 2007. “ Wind‐Throw Mortality in the Southern Boreal Forest: Effects of Species, Diameter and Stand Age.” Journal of Ecology 95: 1261 – 73.
dc.identifier.citedreferenceScheffer, M., M. Hirota, M. Holmgren, E.H. Van Nes, and F.S. Chapin, III. 2012. “ Thresholds for Boreal Biome Transitions.” Proceedings of the National Academy of Sciences of the United States of America 109: 21384 – 9.
dc.identifier.citedreferenceSchindler, D.W., and P.G. Lee. 2010. “ Comprehensive Conservation Planning to Protect Biodiversity and Ecosystem Services in Canadian Boreal Regions under a Warming Climate.” Biological Conservation 143: 1571 – 86.
dc.identifier.citedreferenceSchmiegelow, F.K., C.S. Machtans, and S.J. Hannon. 1997. “ Are Boreal Birds Resilient to Forest Fragmentation? An Experimental Study of Short‐Term Community Responses.” Ecology 78: 1914 – 32.
dc.identifier.citedreferenceStearns, F.W. 1997. “ History of the Lake States Forests: Natural and Human Impacts.” In Lake States Regional Forest Resources Assessment: Technical Papers. Gen. Tech. Rep. NC‐189, edited by J.M. Vasievich and H.H. Webster, 8 – 29. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.
dc.identifier.citedreferenceStralberg, D., D. Arsenault, J.L. Baltzer, Q.E. Barber, E.M. Bayne, Y. Boulanger, C.D. Brown, et al. 2020. “ Climate‐Change Refugia in Boreal North America: What, Where, and for How Long? ” Frontiers in Ecology and the Environment 18: 261 – 70.
dc.identifier.citedreferenceTam, B.Y., K. Szeto, B. Bonsal, G. Flato, A. Cannon, and R. Rong. 2018. “ CMIP5 Drought Projections in Canada Based on the Standardized Precipitation Evapotranspiration Index.” Canadian Water Resources Journal 44: 90 – 107.
dc.identifier.citedreferenceToot, R., L.E. Frelich, E. Butler, and P.B. Reich. 2020. “ Climate‐Biome Envelope Shifts Create Enormous Challenges and Novel Opportunities for Conservation.” Forests 2020 ( 11 ): 1015. https://doi.org/10.3390/f11091015
dc.identifier.citedreferenceTurner, M., W. Baker, C. Peterson, and R. Peet. 1998. “ Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances.” Ecosystems 1: 511 – 23.
dc.identifier.citedreferenceVan Bellen, S., M. Garneau, and Y. Bergeron. 2010. “ Impact of Climate Change on Forest Fire Severity and Consequences for Carbon Stocks in Boreal Quebec, Canada: A Synthesis.” Fire Ecology 6: 16 – 44.
dc.identifier.citedreferenceWaldron, K., J.‐C. Ruel, and S. Gauthier. 2013. “ The Effects of Site Characteristics on the Landscape‐Level Windthrow Regime in the North Shore Region of Quebec, Canada.” Forestry 86: 159 – 71.
dc.identifier.citedreferenceWalker, X., J. Baltzer, S. Cumming, N. Day, C. Ebert, S. Goetz, J. Johnstone, et al. 2019. “ Increasing Wildfires Threaten Historic Carbon Sink of Boreal Forest Soils.” Nature 572: 520 – 3.
dc.identifier.citedreferenceWhitman, E., M.‐A. Parisien, D.K. Thompson, and M.D. Flannigan. 2019. “ Short‐Interval Wildfire and Drought Overwhelm Boreal Forest Resilience.” Scientific Reports 9: 18796.
dc.identifier.citedreferenceWoodall, C.W., and L.M. Nagel. 2007. “ Downed Woody Fuel Loading Dynamics of a Large‐Scale Windstorm in Northern Minnesota, USA.” Forest Ecology and Management 247: 194 – 9.
dc.identifier.citedreferenceWotton, B.M., C.A. Nock, and M.D. Flannigan. 2010. “ Forest Fire Occurrence and Climate Change in Canada.” International Journal of Wildland Fire 19: 253 – 71.
dc.identifier.citedreferenceAnderson, M.J. 2001. “ A New Method for Non‐parametric Multivariate Analysis of Variance.” Austral Ecology 26: 32 – 46.
dc.identifier.citedreferenceAnderson, M.J. 2006. “ Distance‐Based Tests for Homogeneity of Multivariate Dispersions.” Biometrics 62: 245 – 53.
dc.identifier.citedreferenceAnderson, M.J., K.E. Ellingsen, and B.H. McArdle. 2006. “ Multivariate Dispersion as a Measure of Beta Diversity.” Ecology Letters 9: 683 – 93.
dc.identifier.citedreferenceBalshi, M.S., A.D. McGuire, P. Duffy, M. Flannigan, D.W. Kicklighter, and J. Melillo. 2009. “ Vulnerability of Carbon Storage in North American Boreal Forests to Wildfires during the 21st Century.” Global Change Biology 15: 1491 – 510.
dc.identifier.citedreferenceBond‐Lamberty, B., S.D. Peckham, D.E. Ahl, and S.T. Gower. 2007. “ Fire as the Dominant Driver of Central Canadian Boreal Forest Carbon Balance.” Nature 450: 89 – 92.
dc.identifier.citedreferenceBradford, J.B., S. Fraver, A.M. Milo, A.W. D’Amato, B. Palik, and D.J. Shinneman. 2012. “ Effects of Multiple Interacting Disturbances and Salvage Logging on Forest Carbon Stocks.” Forest Ecology and Management 267: 209 – 14.
dc.identifier.citedreferenceBrown, C.D., and J.F. Johnstone. 2012. “ Once Burned, Twice Shy: Repeat Fires Reduce Seed Availability and Alter Substrate Constraints on Picea mariana Regeneration.” Forest Ecology and Management 266: 34 – 41.
dc.identifier.citedreferenceBuma, B. 2015. “ Disturbance Interactions: Characterization, Prediction, and the Potential for Cascading Effects.” Ecosphere 6: 1 – 15.
dc.identifier.citedreferenceByram, G.M. 1959. “ Combustion of Forest Fuels.” In Forest Fire: Control and Use, edited by K.P. Davis, 61 – 89. New York: McGraw‐Hill.
dc.identifier.citedreferenceCannon, J.B., J.J. O’Brien, E.L. Loudermilk, M.B. Dickinson, and C.J. Peterson. 2014. “ The Influence of Experimental Wind Disturbance on Forest Fuels and Fire Characteristics.” Forest Ecology and Management 330: 294 – 303.
dc.identifier.citedreferenceCarlson, D.J., P.B. Reich, and L.E. Frelich. 2011. “ Fine‐Scale Heterogeneity in Overstory Composition Contributes to Heterogeneity of Wildfire Severity in Southern Boreal Forest.” Journal of Forest Research 16: 203 – 14.
dc.identifier.citedreferenceChen, H.Y., and A.R. Taylor. 2012. “ A Test of Ecological Succession Hypotheses Using 55‐Year Time‐Series Data for 361 Boreal Forest Stands.” Global Ecology and Biogeography 21: 441 – 54.
dc.identifier.citedreferenceChrosciewicz, Z. 1974. “ Evaluation of Fire‐Produced Seedbeds for Jack Pine Regeneration in Central Ontario.” Canadian Journal of Forest Research 4: 455 – 7.
dc.identifier.citedreferenceCurtis, R.O., and D.D. Marshall. 2000. “ Why Quadratic Mean Diameter? ” Western Journal of Applied Forestry 15: 137 – 9.
dc.identifier.citedreferenceDiffenbaugh, N.S., M. Scherer, and R.J. Trapp. 2013. “ Robust Increases in Severe Thunderstorm Environments in Response to Greenhouse Forcing.” Proceedings of the National Academy of Sciences of the United States of America 110: 16361 – 6.
dc.identifier.citedreferenceFisichelli, N., L.E. Frelich, and P.B. Reich. 2012. “ Sapling Growth Responses to Warmer Temperatures ‘Cooled’ by Browse Pressure.” Global Change Biology 18: 3455 – 63.
dc.identifier.citedreferenceFlannigan, M.D., K.A. Logan, B.D. Amiro, W.R. Skinner, and B. Stocks. 2005. “ Future Area Burned in Canada.” Climatic Change 72: 1 – 16.
dc.identifier.citedreferenceFlannigan, M., B. Stocks, M. Turetsky, and M. Wotton. 2009. “ Impacts of Climate Change on Fire Activity and Fire Management in the Circumboreal Forest.” Global Change Biology 15: 549 – 60.
dc.identifier.citedreferenceFrelich, L.E. 2002. Forest Dynamics and Disturbance Regimes. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceFrelich, L.E. 2016. “ Forest dynamics.” F1000 Research 5: 183. https://doi.org/10.12688/f1000research.7412.1
dc.identifier.citedreferenceFrelich, L.E., and P.B. Reich. 1995a. “ Neighborhood Effects, Disturbance, and Succession in Forests of the Western Great Lakes Region.” Ecoscience 2: 148 – 58.
dc.identifier.citedreferenceFrelich, L.E., and P.B. Reich. 1995b. “ Spatial Patterns and Succession in a Minnesota Southern‐Boreal Forest.” Ecological Monographs 65: 325 – 46.
dc.identifier.citedreferenceFrelich, L.E., and P.B. Reich. 1998. “ Disturbance Severity and Threshold Responses in the Boreal Forest.” Conservation Ecology 2 ( 2 ): 7. http://www.consecol.org/vol2/iss2/art7/
dc.identifier.citedreferenceFrelich, L.E., and P.B. Reich. 1999. “ Minireviews: Neighborhood Effects, Disturbance Severity, and Community Stability in Forests.” Ecosystems 2: 151 – 66.
dc.identifier.citedreferenceFrelich, L.E., and P.B. Reich. 2009. “ Wilderness Conservation in an Era of Global Warming and Invasive Species: A Case Study from Minnesota’s Boundary Waters Canoe Area Wilderness.” Natural Areas Journal 29: 385 – 93.
dc.identifier.citedreferenceFrelich, L.E., and P.B. Reich. 2010. “ Will Environmental Changes Reinforce the Impact of Global Warming on the Prairie‐Forest Border of Central North America? ” Frontiers in Ecology and the Environment 8: 371 – 8.
dc.identifier.citedreferenceFriedman, S.K., and P.B. Reich. 2005. “ Regional Legacies of Logging: Departure from Presettlement Forest Conditions in Northern Minnesota.” Ecological Applications 15: 726 – 44.
dc.identifier.citedreferenceGrigal, D., and L.F. Ohmann. 1975. “ Classification, Description, and Dynamics of Upland Plant Communities within a Minnesota Wilderness Area.” Ecological Monographs 45: 389 – 407.
dc.identifier.citedreferenceHandler, S., M. Duveneck, L. Iverson, E. Peters, R. Scheller, K. Wythers, L. Brandt, et al. 2014. “ Minnesota Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the Northwoods Climate Change Response Framework Project.” Gen. Tech. Rep. NRS‐133, 228 p. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station.
dc.identifier.citedreferenceHeinselman, M.L. 1973. “ Fire in the Virgin Forests of the Boundary Waters Canoe Area, Minnesota.” Quaternary Research 3: 329.
dc.identifier.citedreferenceHeinselman, M.L. 1996. The Boundary Waters Wilderness Ecosystem. Minneapolis, MN: University of Minnesota Press.
dc.identifier.citedreferenceHicke, J.A., C.D. Allen, A.R. Desai, M.C. Dietze, R.J. Hall, E.H. Hogg, D.M. Kashian, et al. 2012. “ Effects of Biotic Disturbances on Forest Carbon Cycling in the United States and Canada.” Global Change Biology 18: 7 – 34.
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change. 2014. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
dc.identifier.citedreferenceJõgiste, K., H. Korjus, J.A. Stanturf, L.E. Frelich, E. Baders, J. Donis, A. Jansons, et al. 2017. “ Hemi‐Boreal Forest: Natural Disturbances and the Importance of Ecosystem Legacies to Management.” Ecosphere 8 ( 2 ): e01706.
dc.identifier.citedreferenceJohnson, E.A. 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. New York, NY: Cambridge University Press.
dc.identifier.citedreferenceJohnstone, J.F., C.D. Allen, J.F. Franklin, L.E. Frelich, B.J. Harvey, P.E. Higuera, M.C. Mack, et al. 2016. “ Changing Disturbance Regimes, Ecological Memory and Forest Resilience.” Frontiers in Ecology and the Environment 14: 369 – 78.
dc.identifier.citedreferenceJohnstone, J.F., and F.S. Chapin. 2006. “ Fire Interval Effects on Successional Trajectory in Boreal Forests of Northwest Canada.” Ecosystems 9: 268 – 77.
dc.identifier.citedreferenceJones, E.A., D.D. Reed, G.D. Mroz, H.O. Liechty, and P.J. Cattelino. 1993. “ Climate Stress as a Precursor to Forest Decline: Paper Birch in Northern Michigan, 1985–1990.” Canadian Journal of Forest Research 23: 229 – 33.
dc.identifier.citedreferenceKasischke, E.S., N.L. Christensen, and B.J. Stocks. 1995. “ Fire, Global Warming, and the Carbon Balance of Boreal Forests.” Ecological Applications 5: 437 – 51.
dc.identifier.citedreferenceKern, C., J.D. Waskiewicz, L.E. Frelich, B.L. Muñoz Delgado, L.S. Kenefic, K.L. Clark, and J.M. Kabric. 2021. “ Understanding Compositional Stability in Mixedwood Forests of Eastern North America.” Canadian Journal of Forest Research 51: 897 – 909.
dc.identifier.citedreferenceKrawchuk, M.A., S.G. Cumming, and M.D. Flannigan. 2009. “ Predicted Changes in Fire Weather Suggest Increases in Lightning Fire Initiation and Future Area Burned in the Mixedwood Boreal Forest.” Climatic Change 92: 83 – 97.
dc.identifier.citedreferenceKulakowski, D., and T.T. Veblen. 2007. “ Effect of Prior Disturbances on the Extent and Severity of Wildfire in Colorado Subalpine Forests.” Ecology 88: 759 – 69.
dc.identifier.citedreferenceKurz, W.A., G. Stinson, G.J. Rampley, C.C. Dymond, and E.T. Neilson. 2008. “ Risk of Natural Disturbances Makes Future Contribution of Canada’s Forests to the Global Carbon Cycle Highly Uncertain.” Proceedings of the National Academy of Sciences of the United States of America 105: 1551 – 5.
dc.identifier.citedreferenceKuusela, K. 1992. “ The Boreal Forests: An Overview.” Unasylva 43: 3 – 13.
dc.identifier.citedreferenceLe Goff, H., M.D. Flannigan, and Y. Bergeron. 2009. “ Potential Changes in Monthly Fire Risk in the Eastern Canadian Boreal Forest under Future Climate Change.” Canadian Journal of Forest Research 39: 2369 – 80.
dc.identifier.citedreferenceLenton, T.M., J. Rockström, O. Gaffney, S. Rahmstorf, K. Richardson, W. Steffen, and H.J. Schellnhuber. 2019. “ Climate Tipping Points—Too Risky to Bet against.” Nature 575: 592 – 5.
dc.identifier.citedreferenceLevene, H. 1960. “ Robust Tests for Equality of Variances.” In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, edited by I. Olkin, 278 – 92. Palo Alto, CA: Stanford University.
dc.identifier.citedreferenceMcArdle, B.H., and M.J. Anderson. 2001. “ Fitting Multivariate Models to Community Data: A Comment on Distance‐Based Redundancy Analysis.” Ecology 82: 290 – 7.
dc.identifier.citedreferenceMcCune, B., and J.B. Grace. 2002. Analysis of Ecological Communities. Gleneden Beach, OR: Mjm Software Design.
dc.identifier.citedreferenceMichaelian, M., E.H. Hogg, R.J. Hall, and E. Arsenault. 2011. “ Massive Mortality of Aspen Following Severe Drought along the Southern Edge of the Canadian Boreal Forest.” Global Change Biology 17: 2084 – 94.
dc.identifier.citedreferenceMitchell, S. 2013. “ Wind as a Natural Disturbance Agent in Forests: A Synthesis.” Forestry: cps058. 86: 147 – 57.
dc.identifier.citedreferenceMutch, R.W. 1970. “ Wildland Fires and Ecosystems—A Hypothesis.” Ecology 51: 1046 – 51.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.