Show simple item record

Microbowls with Controlled Concavity for Accurate Microscale Mass Spectrometry

dc.contributor.authorXu, Linfeng
dc.contributor.authorLi, Xiangpeng
dc.contributor.authorLi, Wenzong
dc.contributor.authorChang, Kai-Chun
dc.contributor.authorYang, Hyunjun
dc.contributor.authorTao, Nannan
dc.contributor.authorZhang, Pengfei
dc.contributor.authorPayne, Emory M.
dc.contributor.authorModavi, Cyrus
dc.contributor.authorHumphries, Jacqueline
dc.contributor.authorLu, Chia-Wei
dc.contributor.authorAbate, Adam R.
dc.date.accessioned2022-04-08T18:05:46Z
dc.date.available2023-04-08 14:05:43en
dc.date.available2022-04-08T18:05:46Z
dc.date.issued2022-03
dc.identifier.citationXu, Linfeng; Li, Xiangpeng; Li, Wenzong; Chang, Kai-Chun ; Yang, Hyunjun; Tao, Nannan; Zhang, Pengfei; Payne, Emory M.; Modavi, Cyrus; Humphries, Jacqueline; Lu, Chia-Wei ; Abate, Adam R. (2022). "Microbowls with Controlled Concavity for Accurate Microscale Mass Spectrometry." Advanced Materials 34(12): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/172051
dc.description.abstractPatterned surfaces can enhance the sensitivity of laser desorption ionization mass spectrometry by segregating and concentrating analytes, but their fabrication can be challenging. Here, a simple method to fabricate substrates patterned with micrometer‐scale wells that yield more accurate and sensitive mass spectrometry measurements compared to flat surfaces is described. The wells can also concentrate and localize cells and beads for cell‐based assays.Patterned surfaces can enhance the sensitivity of laser desorption ionization mass spectrometry by segregating and concentrating analytes, but their fabrication can be challenging. A simple method to fabricate substrates patterned with micrometer‐scale wells that yield more accurate and sensitive mass spectrometry measurements compared to a flat surface or cylindrical wells is presented. The wells can also concentrate and localize cells and beads for cell‐based assays.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermicrowell arrays
dc.subject.othermicrobowls
dc.subject.othermass spectrometry imaging
dc.titleMicrobowls with Controlled Concavity for Accurate Microscale Mass Spectrometry
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172051/1/adma202108194_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172051/2/adma202108194.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172051/3/adma202108194-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adma.202108194
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceW. Li, M. Khan, H. Li, L. Lin, S. Mao, J.‐M. Lin, Chem. Commun. 2019, 55, 2166.
dc.identifier.citedreferenceH. Togashi, Y. Kobayashi, Rapid Commun. Mass Spectrom. 2009, 23, 2952.
dc.identifier.citedreferenceM. Benz, A. Asperger, M. Hamester, A. Welle, S. Heissler, P. A. Levkin, Nat. Commun. 2020, 11, 5391.
dc.identifier.citedreferenceJ. Bai, Y. H. Liu, D. M. Lubman, D. Siemieniak, Rapid Commun. Mass Spectrom. 1994, 8, 687.
dc.identifier.citedreferenceF. Fournelle, E. Yang, M. Dufresne, P. Chaurand, Anal. Chem. 2020, 92, 5158.
dc.identifier.citedreferenceJ. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. van der Veen, H. L. Ploegh, Nat. Biotechnol. 2006, 24, 703.
dc.identifier.citedreferenceF. Khan, R. Zhang, A. Unciti‐Broceta, J. J. Díaz‐Mochón, M. Bradley, Adv. Mater. 2007, 19, 3524.
dc.identifier.citedreferenceM.‐H. Kang, J. Park, S. Kang, S. Jeon, M. Lee, J.‐Y. Shim, J. Lee, T. J. Jeon, M. K. Ahn, S. M. Lee, O. Kwon, B. H. Kim, J. R. Meyerson, M. J. Lee, K.‐I. Lim, S.‐H. Roh, W. C. Lee, J. Park, Adv. Mater. 2021, 33, 2102991.
dc.identifier.citedreferenceR. H. Cole, S.‐Y. Tang, C. A. Siltanen, P. Shahi, J. Q. Zhang, S. Poust, Z. J. Gartner, A. R. Abate, Proc. Natl. Acad. Sci. USA 2017, 114, 8728.
dc.identifier.citedreferenceP. Zhang, A. R. Abate, Adv. Mater. 2020, 32, 2005346.
dc.identifier.citedreferenceA. Kulesa, J. Kehe, J. E. Hurtado, P. Tawde, P. C. Blainey, Proc. Natl. Acad. Sci. USA 2018, 115, 6685.
dc.identifier.citedreferenceJ.‐B. Hu, Y.‐C. Chen, P. L. Urban, Anal. Chim. Acta 2013, 766, 77.
dc.identifier.citedreferenceY.‐H. Lai, Y.‐H. Cai, H. Lee, Y.‐M. Ou, C.‐H. Hsiao, C.‐W. Tsao, H.‐T. Chang, Y.‐S. Wang, J. Am. Soc. Mass Spectrom. 2016, 27, 1314.
dc.identifier.citedreferenceB. Rieger, L. R. van den Doel, L. J. van Vliet, Phys. Rev. E 2003, 68, 036312.
dc.identifier.citedreferenceW. Sun, F. Yang, Langmuir 2015, 31, 4024.
dc.identifier.citedreferenceG. McCombie, R. Knochenmuss, J. Am. Soc. Mass Spectrom. 2006, 17, 737.
dc.identifier.citedreferenceO. Kudina, B. Eral, F. Mugele, Anal. Chem. 2016, 88, 4669.
dc.identifier.citedreferenceY. Xu, F. Xie, T. Qiu, L. Xie, W. Xing, J. Cheng, Biomicrofluidics 2012, 6, 016504.
dc.identifier.citedreferenceM. Nikkhah, J. S. Strobl, V. Srinivasaraghavan, M. Agah, IEEE Sens. J. 2013, 13, 1125.
dc.identifier.citedreferenceT. Liu, C.‐C. Chien, L. Parkinson, B. Thierry, ACS Appl. Mater. Interfaces 2014, 6, 8090.
dc.identifier.citedreferenceZ. Li, X. Guo, L. Sun, J. Xu, W. Liu, T. Li, J. Wang, Biotechnol. Bioeng. 2020, 117, 1092.
dc.identifier.citedreferenceL. Zhou, X.‐X. Dong, G.‐C. Lv, J. Chen, S. Shen, Opt. Commun. 2015, 342, 167.
dc.identifier.citedreferenceK. Zhong, Y. Gao, F. Li, Z. Zhang, N. Luo, Optik 2014, 125, 2413.
dc.identifier.citedreferenceE. J. Vrij, S. Espinoza, M. Heilig, A. Kolew, M. Schneider, C. A. van Blitterswijk, R. K. Truckenmüller, N. C. Rivron, Lab Chip 2016, 16, 734.
dc.identifier.citedreferenceJ. Y. Park, C. M. Hwang, S.‐H. Lee, Biomed. Microdevices 2009, 11, 129.
dc.identifier.citedreferenceG. S. Jeong, J. H. Song, A. R. Kang, Y. Jun, J. H. Kim, J. Y. Chang, S.‐H. Lee, Adv. Healthcare Mater. 2013, 2, 119.
dc.identifier.citedreferenceX. Zhang, L. Shi, S. Shu, Y. Wang, K. Zhao, N. Xu, S. Liu, P. Roepstorff, Proteomics 2007, 7, 2340.
dc.identifier.citedreferenceH. Wang, C.‐H. Wong, A. Chin, A. Taguchi, A. Taylor, S. Hanash, S. Sekiya, H. Takahashi, M. Murase, S. Kajihara, S. Iwamoto, K. Tanaka, Nat. Protoc. 2011, 6, 253.
dc.identifier.citedreferenceH. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, J. Micromech. Microeng. 1997, 7, 121.
dc.identifier.citedreferenceK. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, B. Gimi, Mater. Sci. Eng., C 2013, 33, 4453.
dc.identifier.citedreferenceL. Xu, K.‐C. Chang, E. M. Payne, C. Modavi, L. Liu, C. M. Palmer, N. Tao, H. S. Alper, R. T. Kennedy, D. S. Cornett, A. R. Abate, Nat. Commun. 2021, 12, 6803.
dc.identifier.citedreferenceA. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, B. Chichkov, Biofabrication 2010, 2, 014104.
dc.identifier.citedreferenceD. Tsvirkun, A. Grichine, A. Duperray, C. Misbah, L. Bureau, Sci. Rep. 2017, 7, 45036.
dc.identifier.citedreferenceD. Haidas, S. Bachler, M. Köhler, L. M. Blank, R. Zenobi, P. S. Dittrich, Anal. Chem. 2019, 91, 2066.
dc.identifier.citedreferenceD. A. Armbruster, T. Pry, Clin. Biochem. Rev. 2008, 29, S49.
dc.identifier.citedreferenceR. Knochenmuss, L. V. Zhigilei, Anal. Bioanal. Chem. 2012, 402, 2511.
dc.identifier.citedreferenceM. Karas, M. Glückmann, J. Schäfer, J. Mass Spectrom. 2000, 35, 1.
dc.identifier.citedreferenceC. M. Palmer, K. K. Miller, A. Nguyen, H. S. Alper, Metab. Eng. 2020, 57, 174.
dc.identifier.citedreferenceJ. Nielsen, Appl. Microbiol. Biotechnol. 2001, 55, 263.
dc.identifier.citedreferenceP. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, Nature 2011, 476, 308.
dc.identifier.citedreferenceM. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater. 2010, 22, 673.
dc.identifier.citedreferenceD. C. Castro, Y. R. Xie, S. S. Rubakhin, E. V. Romanova, J. V. Sweedler, Nat. Methods 2021, 18, 1233.
dc.identifier.citedreferenceR. Kaufmann, J. Biotechnol. 1995, 41, 155.
dc.identifier.citedreferenceM. Kompauer, S. Heiles, B. Spengler, Nat. Methods 2017, 14, 90.
dc.identifier.citedreferenceZ. Yuan, Q. Zhou, L. Cai, L. Pan, W. Sun, S. Qumu, S. Yu, J. Feng, H. Zhao, Y. Zheng, M. Shi, S. Li, Y. Chen, X. Zhang, M. Q. Zhang, Nat. Methods 2021, 18, 1223.
dc.identifier.citedreferenceA. J. Ibáñez, S. R. Fagerer, A. M. Schmidt, P. L. Urban, K. Jefimovs, P. Geiger, R. Dechant, M. Heinemann, R. Zenobi, Proc. Natl. Acad. Sci. USA 2013, 110, 8790.
dc.identifier.citedreferenceT. Si, B. Li, T. J. Comi, Y. Wu, P. Hu, Y. Wu, Y. Min, D. A. Mitchell, H. Zhao, J. V. Sweedler, J. Am. Chem. Soc. 2017, 139, 12466.
dc.identifier.citedreferenceS. M. A. B. Batoy, E. Akhmetova, S. Miladinovic, J. Smeal, C. L. Wilkins, Appl. Spectrosc. Rev. 2008, 43, 485.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.