Show simple item record

Bur1 functions with TORC1 for vacuole‐mediated cell cycle progression

dc.contributor.authorJin, Yui
dc.contributor.authorJin, Natsuko
dc.contributor.authorOikawa, Yu
dc.contributor.authorBenyair, Ron
dc.contributor.authorKoizumi, Michiko
dc.contributor.authorWilson, Thomas E
dc.contributor.authorOhsumi, Yoshinori
dc.contributor.authorWeisman, Lois S
dc.date.accessioned2022-04-08T18:06:19Z
dc.date.available2023-05-08 14:06:16en
dc.date.available2022-04-08T18:06:19Z
dc.date.issued2022-04-05
dc.identifier.citationJin, Yui; Jin, Natsuko; Oikawa, Yu; Benyair, Ron; Koizumi, Michiko; Wilson, Thomas E; Ohsumi, Yoshinori; Weisman, Lois S (2022). "Bur1 functions with TORC1 for vacuole‐mediated cell cycle progression." EMBO reports (4): n/a-n/a.
dc.identifier.issn1469-221X
dc.identifier.issn1469-3178
dc.identifier.urihttps://hdl.handle.net/2027.42/172062
dc.description.abstractThe vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin‐dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1‐267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.SynopsisThe yeast vacuole is required for cell cycle progression through early G1 phase via TORC1 signaling. This study reveals that Bur1/Cdk9, a cyclin‐dependent kinase, is also required for vacuole‐mediated cell cycle progression and acts in parallel with TORC1.Bur1/Cdk9 is required for cell cycle progression through G1 phase.Bur1 functions in parallel with TORC1 through direct phosphorylation of Sch9.TORC1 and Bur1 each phosphorylate unique sites on Sch9, and in addition phosphorylate sites in common.The yeast vacuole is required for cell cycle progression through early G1 phase via TORC1 signaling. This study reveals that Bur1/Cdk9, a cyclin‐dependent kinase, is also required for vacuole‐mediated cell cycle progression and acts in parallel with TORC1.
dc.publisherCold Spring Harbor Laboratory Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlysosome
dc.subject.otherrapamycin
dc.subject.otherSGV1
dc.subject.otherSCH9
dc.subject.otheryeast
dc.titleBur1 functions with TORC1 for vacuole‐mediated cell cycle progression
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172062/1/embr202153477.reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172062/2/embr202153477.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172062/3/embr202153477-sup-0001-EVFigs.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172062/4/embr202153477_am.pdf
dc.identifier.doi10.15252/embr.202153477
dc.identifier.sourceEMBO reports
dc.identifier.citedreferenceMurray S, Udupa R, Yao S, Hartzog G, Prelich G ( 2001 ) Phosphorylation of the RNA polymerase II carboxy‐terminal domain by the Bur1 cyclin‐dependent kinase. Mol Cell Biol 21: 4089 – 4096
dc.identifier.citedreferenceKaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK ( 2005 ) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193 – 1196
dc.identifier.citedreferenceKaiser C, Michaelis S, Mitchell A ( 1994 ) Methods in yeast genetics: a Cold Spring Harbor laboratory course manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
dc.identifier.citedreferenceKalderon D, Roberts BL, Richardson WD, Smith AE ( 1984 ) A short amino acid sequence able to specify nuclear location. Cell 39: 499 – 509
dc.identifier.citedreferenceKeogh M‐C, Podolny V, Buratowski S ( 2003 ) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol Cell Biol 23: 7005 – 7018
dc.identifier.citedreferenceKeppler‐Ross S, Noffz C, Dean N ( 2008 ) A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans. Genetics 179: 705 – 710
dc.identifier.citedreferenceKlionsky DJ, Herman PK, Emr SD ( 1990 ) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54: 266 – 292
dc.identifier.citedreferenceKnoblach B, Rachubinski RA ( 2015 ) Motors, anchors, and connectors: orchestrators of organelle inheritance. Annu Rev Cell Dev Biol 31: 55 – 81
dc.identifier.citedreferenceKosugi S, Hasebe M, Tomita M, Yanagawa H ( 2009 ) Systematic identification of cell cycle‐dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 106: 10171 – 10176
dc.identifier.citedreferenceLiu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S ( 2009 ) Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29: 4852 – 4863
dc.identifier.citedreferenceLongtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR ( 1998 ) Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953 – 961
dc.identifier.citedreferenceLorenz MC, Heitman J ( 1995 ) TOR mutations confer rapamycin resistance by preventing interaction with FKBP12‐rapamycin. J Biol Chem 270: 27531 – 27537
dc.identifier.citedreferenceMcQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D et al ( 2018 ) Cell Profiler 3.0: next‐generation image processing for biology. PLoS Biol 16: e2005970
dc.identifier.citedreferenceMoreno‐Torres M, Jaquenoud M, De Virgilio C ( 2015 ) TORC1 controls G1‐S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway. Nat Commun 6: 8256
dc.identifier.citedreferenceOates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue Bin, Dosztányi Zsuzsanna, Uversky VN, Obradovic Z, Kurgan L et al ( 2012 ) D2P2: database of disordered protein predictions. Nucleic Acids Research 41: D508 – D516
dc.identifier.citedreferenceOhsumi Y ( 2006 ) Protein turnover. IUBMB Life 58: 363 – 369
dc.identifier.citedreferencePedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C ( 2003 ) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12: 1607 – 1613
dc.identifier.citedreferencePrelich G, Winston F ( 1993 ) Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665 – 676
dc.identifier.citedreferenceRose MD, Novick P, Thomas JH, Botstein D, Fink GR ( 1987 ) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere‐containing shuttle vector. Gene 60: 237 – 243
dc.identifier.citedreferenceShaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M et al ( 2013 ) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10: 407 – 409
dc.identifier.citedreferenceShin Y, Brangwynne CP ( 2017 ) Liquid phase condensation in cell physiology and disease. Science 357: eaaf4382
dc.identifier.citedreferenceSikorski RS, Hieter P ( 1989 ) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19 – 27
dc.identifier.citedreferenceSuzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N ( 2015 ) Identification of non‐Ser/Thr‐Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Sci Rep 5: 7929
dc.identifier.citedreferenceUrban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H et al ( 2007 ) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26: 663 – 674
dc.identifier.citedreferenceVernet T, Dignard D, Thomas DY ( 1987 ) A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52: 225 – 233
dc.identifier.citedreferenceWang YX, Catlett NL, Weisman LS ( 1998 ) Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol 140: 1063 – 1074
dc.identifier.citedreferenceWeisman LS ( 2006 ) Organelles on the move: insights from yeast vacuole inheritance. Nat Rev Mol Cell Biol 7: 243 – 252
dc.identifier.citedreferenceWen W, Meinkoth JL, Tsien RY, Taylor SS ( 1995 ) Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463 – 473
dc.identifier.citedreferenceYao S, Neiman A, Prelich G ( 2000 ) BUR1 and BUR2 encode a divergent cyclin‐dependent kinase‐cyclin complex important for transcription in vivo. Mol Cell Biol 20: 7080 – 7087
dc.identifier.citedreferenceAnand VC, Daboussi L, Lorenz TC, Payne GS ( 2009 ) Genome‐wide analysis of AP‐3‐dependent protein transport in yeast. Mol Biol Cell 20: 1592 – 1604
dc.identifier.citedreferenceBirkeland SR, Jin N, Ozdemir AC, Lyons RH, Weisman LS, Wilson TE ( 2010 ) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole‐genome sequencing. Genetics 186: 1127 – 1137
dc.identifier.citedreferenceBonangelino CJ, Catlett NL, Weisman LS ( 1997 ) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17: 6847 – 6858
dc.identifier.citedreferencede Bruin RAM, McDonald WH, Kalashnikova TI, Yates J, Wittenberg C ( 2004 ) Cln3 activates G1‐specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117: 887 – 898
dc.identifier.citedreferenceCatlett NL, Duex JE, Tang F, Weisman LS ( 2000 ) Two distinct regions in a yeast myosin‐V tail domain are required for the movement of different cargoes. J Cell Biol 150: 513 – 526
dc.identifier.citedreferenceCatlett NL, Weisman LS ( 1998 ) The terminal tail region of a yeast myosin‐V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci U S A 95: 14799 – 14804
dc.identifier.citedreferenceClausing E, Mayer A, Chanarat S, Müller B, Germann SM, Cramer P, Lisby M, Strässer K ( 2010 ) The transcription elongation factor Bur1‐Bur2 interacts with replication protein A and maintains genome stability during replication stress. J Biol Chem 285: 41665 – 41674
dc.identifier.citedreferenceCostanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S et al ( 2010 ) The genetic landscape of a cell. Science 327: 425 – 431
dc.identifier.citedreferenceCostanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M ( 2004 ) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117: 899 – 913
dc.identifier.citedreferenceEves PT, Jin Y, Brunner M, Weisman LS ( 2012 ) Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J Cell Biol 198: 69 – 85
dc.identifier.citedreferenceFabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD ( 2001 ) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292: 288 – 290
dc.identifier.citedreferenceHuh W‐K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK ( 2003 ) Global analysis of protein localization in budding yeast. Nature 425: 686 – 691
dc.identifier.citedreferenceIrie K, Nomoto S, Miyajima I, Matsumoto K ( 1991 ) SGV1 encodes a CDC28/cdc2‐related kinase required for a G alpha subunit‐mediated adaptive response to pheromone in S. cerevisiae. Cell 65: 785 – 795
dc.identifier.citedreferenceIshikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS ( 2003 ) Identification of an organelle‐specific myosin V receptor. J Cell Biol 160: 887 – 897
dc.identifier.citedreferenceJacinto E, Lorberg A ( 2008 ) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410: 19 – 37
dc.identifier.citedreferenceJanke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno‐Borchart A, Doenges G, Schwob E, Schiebel E et al ( 2004 ) A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947 – 962
dc.identifier.citedreferenceJin N, Jin Y, Weisman LS ( 2017 ) Early protection to stress mediated by CDK‐dependent PI3,5P2 signaling from the vacuole/lysosome. J Cell Biol 216: 2075 – 2090
dc.identifier.citedreferenceJin N, Mao K, Jin Y, Tevzadze G, Kauffman EJ, Park S, Bridges D, Loewith R, Saltiel AR, Klionsky DJ et al ( 2014 ) Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 25: 1171 – 1185
dc.identifier.citedreferenceJin Y, Taylor Eves P, Tang F, Weisman LS ( 2009 ) PTC1 is required for vacuole inheritance and promotes the association of the myosin‐V vacuole‐specific receptor complex. Mol Biol Cell 20: 1312 – 1323
dc.identifier.citedreferenceJin Y, Weisman LS ( 2015 ) The vacuole/lysosome is required for cell‐cycle progression. Elife 4
dc.identifier.citedreferenceJorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M ( 2004 ) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18: 2491 – 2505
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.