Show simple item record

Scavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia

dc.contributor.authorAhn, Bumsoo
dc.contributor.authorRanjit, Rojina
dc.contributor.authorKneis, Parker
dc.contributor.authorXu, Hongyang
dc.contributor.authorPiekarz, Katarzyna M.
dc.contributor.authorFreeman, Willard M.
dc.contributor.authorKinter, Michael
dc.contributor.authorRichardson, Arlan
dc.contributor.authorRan, Qitao
dc.contributor.authorBrooks, Susan V.
dc.contributor.authorVan Remmen, Holly
dc.date.accessioned2022-04-08T18:06:53Z
dc.date.available2023-04-08 14:06:50en
dc.date.available2022-04-08T18:06:53Z
dc.date.issued2022-03
dc.identifier.citationAhn, Bumsoo; Ranjit, Rojina; Kneis, Parker; Xu, Hongyang; Piekarz, Katarzyna M.; Freeman, Willard M.; Kinter, Michael; Richardson, Arlan; Ran, Qitao; Brooks, Susan V.; Van Remmen, Holly (2022). "Scavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia." Aging Cell (3): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/172073
dc.description.abstractAge‐related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle‐specific overexpression of the mitochondrial H2O2 scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H2O2 can prevent or delay the redox‐dependent sarcopenia. Basal rates of H2O2 generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross‐sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild‐type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle‐specific PRDX3 overexpression reduces mitochondrial H2O2 generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox‐dependent sarcopenia.Compared to innervating wildtype muscle (Top), redox‐dependent sarcopenia is accompanied by increased neuromuscular junction disruption and hydrogen peroxide from the mitochondria (Middle). Scavenging mitochondrial hydrogen peroxide protects the muscle from contractile dysfunction and atrophy independent of NMJ disruption in a mouse model of redox dependent sarcopenia (Bottom).
dc.publisherWiley Periodicals, Inc.
dc.subject.othersarcopenia
dc.subject.otheraging
dc.subject.otherhydrogen peroxide
dc.subject.othermitochondria
dc.subject.otherperoxiredoxin3
dc.titleScavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172073/1/acel13569_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172073/2/acel13569-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172073/3/acel13569.pdf
dc.identifier.doi10.1111/acel.13569
dc.identifier.sourceAging Cell
dc.identifier.citedreferenceNguyen, T., Bowen, T. S., Augstein, A., Schauer, A., Gasch, A., Linke, A., Labeit, S., & Adams, V. ( 2020 ). Expression of MuRF1 or MuRF2 is essential for the induction of skeletal muscle atrophy and dysfunction in a murine pulmonary hypertension model. Skeletal Muscle, 10, 12. https://doi.org/10.1186/s13395‐020‐00229‐2
dc.identifier.citedreferenceJang, Y. C., Liu, Y., Hayworth, C. R., Bhattacharya, A., Lustgarten, M. S., Muller, F. L., Chaudhuri, A., Qi, W., Li, Y., Huang, J.‐Y., Verdin, E., Richardson, A., & Van Remmen, H. ( 2012 ). Dietary restriction attenuates age‐associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell, 11, 770 – 782. https://doi.org/10.1111/j.1474‐9726.2012.00843.x
dc.identifier.citedreferenceJang, Y. C., Lustgarten, M. S., Liu, Y., Muller, F. L., Bhattacharya, A., Liang, H., Salmon, A. B., Brooks, S. V., Larkin, L., Hayworth, C. R., Richardson, A., & Van Remmen, H. ( 2010 ). Increased superoxide in vivo accelerates age‐associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24, 1376 – 1390.
dc.identifier.citedreferenceJang, Y. C., & Van Remmen, H. ( 2011 ). Age‐associated alterations of the neuromuscular junction. Experimental Gerontology, 46, 193 – 198.
dc.identifier.citedreferenceLarkin, L. M., Davis, C. S., Sims‐Robinson, C., Kostrominova, T. Y., Van Remmen, H., Richardson, A., Feldman, E. L., & Brooks, S. V. ( 2011 ). Skeletal muscle weakness due to deficiency of CuZn‐superoxide dismutase is associated with loss of functional innervation. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 301, R1400 – 1407. https://doi.org/10.1152/ajpregu.00093.2011
dc.identifier.citedreferenceLee, K.‐P., Shin, Y. J., Cho, S. C., Lee, S.‐M., Bahn, Y. J., Kim, J. Y., Kwon, E.‐S., Jeong, D. Y., Park, S. C., Rhee, S. G., Woo, H. A., & Kwon, K.‐S. ( 2014 ). Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis. Free Radical Biology and Medicine, 77, 298 – 306.
dc.identifier.citedreferenceLexell, J. ( 1995 ). Human aging, muscle mass, and fiber type composition. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 50, 11 – 16.
dc.identifier.citedreferenceLexell, J., & Downham, D. Y. ( 1991 ). The occurrence of fibre‐type grouping in healthy human muscle: a quantitative study of cross‐sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathologica, 81, 377 – 381. https://doi.org/10.1007/BF00293457
dc.identifier.citedreferenceMansouri, A., Muller, F. L., Liu, Y., Ng, R., Faulkner, J., Hamilton, M., Richardson, A., Huang, T.‐T., Epstein, C. J., & Van Remmen, H. ( 2006 ). Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind‐limb skeletal muscle during aging. Mechanisms of Ageing and Development, 127, 298 – 306. https://doi.org/10.1016/j.mad.2005.11.004
dc.identifier.citedreferenceMasser, D. R., Clark, N. W., Van Remmen, H., & Freeman, W. M. ( 2016 ). Loss of the antioxidant enzyme CuZnSOD (Sod1) mimics an age‐related increase in absolute mitochondrial DNA copy number in the skeletal muscle. AGE, 38, 323 – 333. https://doi.org/10.1007/s11357‐016‐9930‐1
dc.identifier.citedreferenceMoopanar, T. R., & Allen, D. G. ( 2005 ). Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C. Journal of Physiology, 564, 189 – 199.
dc.identifier.citedreferenceMoopanar, T. R., & Allen, D. G. ( 2006 ). The activity‐induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. Journal of Physiology, 571, 191 – 200.
dc.identifier.citedreferenceMorton, A. B., Norton, C. E., Jacobsen, N. L., Fernando, C. A., Cornelison, D. D. W., & Segal, S. S. ( 2019 ). Barium chloride injures myofibers through calcium‐induced proteolysis with fragmentation of motor nerves and microvessels. Skeletal Muscle, 9, 27. https://doi.org/10.1186/s13395‐019‐0213‐2
dc.identifier.citedreferenceMuller, F. L., Liu, Y., Abdul‐Ghani, M. A., Lustgarten, M. S., Bhattacharya, A., Jang, Y. C., & Van Remmen, H. ( 2008 ). High rates of superoxide production in skeletal‐muscle mitochondria respiring on both complex I‐ and complex II‐linked substrates. The Biochemical Journal, 409, 491 – 499.
dc.identifier.citedreferenceMuller, F. L., Song, W., Liu, Y., Chaudhuri, A., Pieke‐Dahl, S., Strong, R., Huang, T.‐T., Epstein, C. J., Roberts, L. J., Csete, M., Faulkner, J. A., & Van Remmen, H. ( 2006 ). Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age‐dependent skeletal muscle atrophy. Free Radical Biology and Medicine, 40, 1993 – 2004.
dc.identifier.citedreferenceMurgia, M., Toniolo, L., Nagaraj, N., Ciciliot, S., Vindigni, V., Schiaffino, S., Reggiani, C., & Mann, M. ( 2017 ). Single muscle fiber proteomics reveals fiber‐type‐specific features of human muscle aging. Cell Reports, 19, 2396 – 2409. https://doi.org/10.1016/j.celrep.2017.05.054
dc.identifier.citedreferenceOda, K. ( 1984 ). Age changes of motor innervation and acetylcholine receptor distribution on human skeletal muscle fibres. Journal of the Neurological Sciences, 66, 327 – 338.
dc.identifier.citedreferencePaul, A. C., & Rosenthal, N. ( 2002 ). Different modes of hypertrophy in skeletal muscle fibers. Journal of Cell Biology, 156, 751 – 760. https://doi.org/10.1083/jcb.200105147
dc.identifier.citedreferencePharaoh, G., Brown, J. L., Sataranatarajan, K., Kneis, P., Bian, J., Ranjit, R., Hadad, N., Georgescu, C., Rabinovitch, P., Ran, Q., Wren, J. D., Freeman, W., Kinter, M., Richardson, A., & Van Remmen, H. ( 2020 ). Targeting cPLA2 derived lipid hydroperoxides as a potential intervention for sarcopenia. Scientific Reports, 10, 13968.
dc.identifier.citedreferencePlant, D. R., & Gregorevic, P., Williams, D. A., & Lynch, G. S. ( 2001 ). Williams DA & Lynch GS (2001) Redox modulation of maximum force production of fast‐and slow‐twitch skeletal muscles of rats and mice. Journal of Applied Physiology (Bethesda, Md.: 1985), 90, 832 – 838.
dc.identifier.citedreferencePowers, S. K., & Jackson, M. J. ( 2008 ). Exercise‐induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiological Reviews, 88, 1243 – 1276. https://doi.org/10.1152/physrev.00031.2007
dc.identifier.citedreferencePurves‐Smith, F. M., Sgarioto, N., & Hepple, R. T. ( 2014 ). Fiber typing in aging muscle. Exercise and Sport Sciences Reviews, 42, 45 – 52.
dc.identifier.citedreferenceRoberts, L. J., & Morrow, J. D. ( 2000 ). Measurement of F(2)‐isoprostanes as an index of oxidative stress in vivo. Free Radical Biology and Medicine, 28, 505 – 513.
dc.identifier.citedreferenceSataranatarajan, K., Qaisar, R., Davis, C., Sakellariou, G. K., Vasilaki, A., Zhang, Y., Liu, Y., Bhaskaran, S., McArdle, A., Jackson, M., Brooks, S. V., Richardson, A., & Van Remmen, H. ( 2015 ). Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox Biology, 5, 140 – 148. https://doi.org/10.1016/j.redox.2015.04.005
dc.identifier.citedreferenceSonjak, V., Jacob, K., Morais, J. A., Rivera‐Zengotita, M., Spendiff, S., Spake, C., Taivassalo, T., Chevalier, S., & Hepple, R. T. ( 2019 ). Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. Journal of Physiology, 597, 5009 – 5023. https://doi.org/10.1113/JP278261
dc.identifier.citedreferenceTogliatto, G., Trombetta, A., Dentelli, P., Cotogni, P., Rosso, A., Tschöp, M. H., Granata, R., Ghigo, E., & Brizzi, M. F. ( 2013 ). Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD‐2‐mediated miR‐221/222 expression. Journal of the American Heart Association, 2, e000376. https://doi.org/10.1161/JAHA.113.000376
dc.identifier.citedreferenceTomlinson, B. E., & Irving, D. ( 1977 ). The numbers of limb motor neurons in the human lumbosacral cord throughout life. Journal of the Neurological Sciences, 34, 213 – 219.
dc.identifier.citedreferenceTomonaga, M. ( 1977 ). Histochemical and ultrastructural changes in senile human skeletal muscle. Journal of the American Geriatrics Society, 25, 125 – 131.
dc.identifier.citedreferenceUmanskaya, A., Santulli, G., Xie, W., Andersson, D. C., Reiken, S. R., & Marks, A. R. ( 2014 ). Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proceedings of the National Academy of Sciences of the United States of America, 111, 15250 – 15255.
dc.identifier.citedreferenceXu, H., Ranjit, R., Richardson, A., & Van Remmen, H. ( 2021 ). Muscle mitochondrial catalase expression prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of accelerated sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 12 ( 6 ), 1582 – 1596. https://doi.org/10.1002/jcsm.12768
dc.identifier.citedreferenceZhang, Y.‐G., Wang, L., Kaifu, T., Li, J., Li, X., & Li, L. ( 2016 ). Featured Article: Accelerated decline of physical strength in peroxiredoxin‐3 knockout mice. Experimental Biology and Medicine (Maywood, N.J.), 241, 1395 – 1400.
dc.identifier.citedreferenceAhn, B., Ranjit, R., Premkumar, P., Pharaoh, G., Piekarz, K. M., Matsuzaki, S., Claflin, D. R., Riddle, K., Judge, J., Bhaskaran, S., Satara Natarajan, K., Barboza, E., Wronowski, B., Kinter, M., Humphries, K. M., Griffin, T. M., Freeman, W. M., Richardson, A., Brooks, S. V., & Van Remmen, H. ( 2019 ). Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. Journal of Cachexia, Sarcopenia and Muscle, 10 ( 2 ), 411 – 428. https://doi.org/10.1002/jcsm.12375
dc.identifier.citedreferenceAhn, B., Smith, N., Saunders, D., Ranjit, R., Kneis, P., Towner, R. A., & Van Remmen, H. ( 2019 ). Using MRI to measure in vivo free radical production and perfusion dynamics in a mouse model of elevated oxidative stress and neurogenic atrophy. Redox Biology, 26, 101308. https://doi.org/10.1016/j.redox.2019.101308
dc.identifier.citedreferenceAndersen, J. L. ( 2003 ). Muscle fibre type adaptation in the elderly human muscle. Scandinavian Journal of Medicine and Science in Sports, 13, 40 – 47.
dc.identifier.citedreferenceAndrade, F. H., Reid, M. B., Allen, D. G., & Westerblad, H. ( 1998 ). Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. Journal of Physiology, 509 ( Pt 2 ), 565 – 575. https://doi.org/10.1111/j.1469‐7793.1998.565bn.x
dc.identifier.citedreferenceBodine, S. C., & Baehr, L. M. ( 2014 ). Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin‐1. American Journal of Physiology. Endocrinology and Metabolism, 307, E469 – 484. https://doi.org/10.1152/ajpendo.00204.2014
dc.identifier.citedreferenceChai, R. J., Vukovic, J., Dunlop, S., Grounds, M. D., & Shavlakadze, T. ( 2011 ). Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One, 6, e28090. https://doi.org/10.1371/journal.pone.0028090
dc.identifier.citedreferenceChakkalakal, J. V., Nishimune, H., Ruas, J. L., Spiegelman, B. M., & Sanes, J. R. ( 2010 ). Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development (Cambridge, England), 137, 3489 – 3499.
dc.identifier.citedreferenceChang, T.‐S., Cho, C.‐S., Park, S., Yu, S., Kang, S. W., & Rhee, S. G. ( 2004 ). Peroxiredoxin III, a mitochondrion‐specific peroxidase, regulates apoptotic signaling by mitochondria. Journal of Biological Chemistry, 279, 41975 – 41984.
dc.identifier.citedreferenceChen, L., Na, R., Gu, M., Salmon, A. B., Liu, Y., Liang, H., Qi, W., Van Remmen, H., Richardson, A., & Ran, Q. ( 2008 ). Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell, 7, 866 – 878.
dc.identifier.citedreferenceCox, A. G., Winterbourn, C. C., & Hampton, M. B. ( 2009 ). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. The Biochemical Journal, 425, 313 – 325.
dc.identifier.citedreferenceDremina, E. S., Sharov, V. S., Davies, M. J., & Schöneich, C. ( 2007 ). Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides. Chemical Research in Toxicology, 20, 1462 – 1469.
dc.identifier.citedreferenceDuddy, W., Duguez, S., Johnston, H., Cohen, T. V., Phadke, A., Gordish‐Dressman, H., Nagaraju, K., Gnocchi, V., Low, S., & Partridge, T. ( 2015 ). Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skeletal Muscle, 5, 16. https://doi.org/10.1186/s13395‐015‐0041‐y
dc.identifier.citedreferenceIvannikov, M. V., & Van Remmen, H. ( 2015 ). Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild‐type mice. Free Radical Biology and Medicine, 84, 254 – 262.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.