Show simple item record

Cortico‐striatal functional connectivity and cerebral small vessel disease: Contribution to mild Parkinsonian signs

dc.contributor.authorHengenius, James B.
dc.contributor.authorBohnen, Nicolaas I.
dc.contributor.authorRosso, Andrea
dc.contributor.authorHuppert, Theodore J.
dc.contributor.authorRosano, Caterina
dc.date.accessioned2022-04-08T18:07:09Z
dc.date.available2023-04-08 14:07:07en
dc.date.available2022-04-08T18:07:09Z
dc.date.issued2022-03
dc.identifier.citationHengenius, James B.; Bohnen, Nicolaas I.; Rosso, Andrea; Huppert, Theodore J.; Rosano, Caterina (2022). "Cortico‐striatal functional connectivity and cerebral small vessel disease: Contribution to mild Parkinsonian signs." Journal of Neuroimaging 32(2): 352-362.
dc.identifier.issn1051-2284
dc.identifier.issn1552-6569
dc.identifier.urihttps://hdl.handle.net/2027.42/172077
dc.description.abstractBackground and PurposeMild Parkinsonian signs (MPS) are common in older adults. We hypothesized that MPS are associated with lower functional connectivity (FC) in dopamine‐dependent cortico‐striatal networks, and these associations vary with white matter hyperintensity (WMH), a risk factor for MPS.MethodsWe examined resting‐state functional MRI in 266 participants (mean age 83; 57% female; 41% African American) with data on MPS (Unified Parkinson’s Disease Rating Scale), demographics, cognition, muscle‐skeletal, and cardiometabolic health. FC between cortex and striatum was examined separately for sensorimotor, executive, and limbic functional subregions. Logistic regression tested the association of FC in each network with MPS, adjusted for covariates. Interactions of FC by WMH were tested; and analyses were repeated stratified by WMH above/below the median.ResultsCompared to those without MPS, those with MPS had lower cortico‐striatal FC in the left executive network (adjusted odds ratio [95% confidence interval], p‐value: 0.188 [0.043, 0.824], .027). The interaction with WMH was p = .064; left executive FC was inversely associated with MPS for high WMH (0.077 [0.010, 0.599], .014) but not low WMH participants (1.245 [0.128, 12.132], .850).ConclusionsMPS appear related to lower executive network FC, robust to adjustment for other risk factors, and stronger for those with higher burden of WMH. Future longitudinal studies should examine the interplay between cerebral small vessel disease and connectivity influencing MPS.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermild Parkinsonian signs
dc.subject.otherfunctional connectivity
dc.subject.othercortico‐striatal network
dc.subject.otherwhite matter hyperintensities
dc.titleCortico‐striatal functional connectivity and cerebral small vessel disease: Contribution to mild Parkinsonian signs
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172077/1/jon12949_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172077/2/jon12949.pdf
dc.identifier.doi10.1111/jon.12949
dc.identifier.sourceJournal of Neuroimaging
dc.identifier.citedreferenceGlasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi‐modal parcellation of human cerebral cortex. Nature. 2016; 536: 171 – 8.
dc.identifier.citedreferenceQuandt F, Fischer F, Schröder J, Heinze M, Lettow I, Frey BM, et al. Higher white matter hyperintensity lesion load is associated with reduced long‐range functional connectivity. Brain Commun. 2020; 2: fcaa111.
dc.identifier.citedreferenceIntroducing the Health ABC study: the dynamics of health, aging, and body composition. Available at: https://healthabc.nia.nih.gov. Accessed April 27, 2021.
dc.identifier.citedreferenceRosso AL, Studenski SA, Longstreth WT, Brach JS, Boudreau RM, Rosano C. Contributors to poor mobility in older adults: integrating white matter hyperintensities and conditions affecting other systems. J Gerontol A Biol Sci Med Sci. 2017; 72: 1246 – 51.
dc.identifier.citedreferenceTeng E, Chui H. The Modified Mini‐Mental State (3MS) examination. J Clin Psychiatry. 1987; 48: 314 – 8.
dc.identifier.citedreferenceRadloff LS. The CES‐D scale. Appl Psychol Meas. 1977; 1: 385 – 401.
dc.identifier.citedreferenceWu M, Rosano C, Butters M, Whyte E, Nable M, Crooks R, et al. A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Res ‐ Neuroimaging. 2006; 148: 133 – 42.
dc.identifier.citedreferenceTziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, et al. Connectivity‐based functional analysis of dopamine release in the striatum using diffusion‐weighted MRI and positron emission tomography. Cereb Cortex. 2014; 24: 1165 – 77.
dc.identifier.citedreferenceTziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [11C]‐(+)‐PHNO: dissection of D3 signal and anatomy. Neuroimage. 2011; 54: 264 – 77.
dc.identifier.citedreferenceRothman K. No adjustments are needed for multiple comparisons. Epidemiology. 1990; 1: 43 – 6.
dc.identifier.citedreferenceFerreira LK, Regina ACB, Kovacevic N, da Graça Morais Martin M, Santos PP, de Godoi Carneiro C, et al. Aging effects on whole‐brain functional connectivity in adults free of cognitive and psychiatric disorders. Cereb Cortex. 2016; 26: 3851 – 65.
dc.identifier.citedreferenceSheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry. 2013; 74: 340 – 7.
dc.identifier.citedreferenceSeidler R, Erdeniz B, Koppelmans V, Hirsiger S, Mérillat S, Jäncke L. Associations between age, motor function, and resting state sensorimotor network connectivity in healthy older adults. Neuroimage. 2015; 108: 47 – 59.
dc.identifier.citedreferenceSala‐Llonch R, Bartrés‐Faz D, Junqué C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015; 6: 663.
dc.identifier.citedreferenceTessitore A, Amboni M, Esposito F, et al. Resting‐state brain connectivity in patients with Parkinson’s disease and freezing of gait. Park Relat Disord. 2012; 18: 781 – 7.
dc.identifier.citedreferenceShine JM, Moustafa AA, Matar E, Frank MJ, Lewis SJG. The role of frontostriatal impairment in freezing of gait in Parkinson’s disease. Front Syst Neurosci. 2013; 7: 61.
dc.identifier.citedreferenceKarunanayaka PR, Lee EY, Lewis MM, Sen S, Eslinger PJ, Yang QX, et al. Default mode network differences between rigidity‐ and tremor‐predominant Parkinson’s disease. Cortex. 2016; 81: 239 – 50.
dc.identifier.citedreferenceLouis ED, Tang MX, Schupf N, Mayeux R. Functional correlates and prevalence of mild parkinsonian signs in a community population of older people. Arch Neurol. 2005; 62: 297 – 302.
dc.identifier.citedreferenceGillies GE, Pienaar IS, Vohra S, Qamhawi Z. Sex differences in Parkinson’s disease. Front Neuroendocrinol. 2014; 35: 370 – 84.
dc.identifier.citedreferenceKelly NA, Wood KH, Allendorfer JB, Ford MP, Bickel CS, Marstrander J, et al. High‐intensity exercise acutely increases substantia nigra and prefrontal brain activity in Parkinson’s disease. Med Sci Monit. 2017; 23: 6064 – 71.
dc.identifier.citedreferenceGanguli M, Lee C, Hughes T, Snitz BE, Jakubcak J, Duara R, et al. Who wants a free brain scan? Assessing and correcting for recruitment biases in a population‐based sMRI pilot study. Brain Imaging Behav. 2015; 9: 204 – 12.
dc.identifier.citedreferenceBirn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, et al. The effect of scan length on the reliability of resting‐state fMRI connectivity estimates. Neuroimage. 2013; 83: 550 – 8.
dc.identifier.citedreferenceFox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005; 102: 9673 – 8.
dc.identifier.citedreferenceVan Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2010; 103: 297 – 321.
dc.identifier.citedreferenceBehfar Q, Behfar SK, von Reutern B, Richter N, Dronse J, Fassbender R, et al. Graph theory analysis reveals resting‐state compensatory mechanisms in healthy aging and prodromal Alzheimer’s disease. Front Aging Neurosci. 2020; 12: 1 – 13.
dc.identifier.citedreferenceKoch K, Myers NE, Göttler J, Pasquini L, Grimmer T, Förster S, et al. Disrupted intrinsic networks link amyloid‐β pathology and impaired cognition in prodromal Alzheimer’s disease. Cereb Cortex. 2015; 25: 4678 – 88.
dc.identifier.citedreferenceCamarda C, Torelli P, Pipia C, Battaglini I, Azzarello D, Rosano R, et al. Association between atrophy of the caudate nuclei, global brain atrophy, cerebral small vessel disease and mild Parkinsonian signs in neurologically and cognitively healthy subjects aged 45–84 years: a crosssectional study. Curr Alzheimer Res. 2018; 15: 1013 – 26.
dc.identifier.citedreferenceRosso AL, Bohnen NI, Launer LJ, Aizenstein HJ, Yaffe K, Rosano C. Vascular and dopaminergic contributors to mild parkinsonian signs in older adults. Neurology. 2018; 90: E223 – 9.
dc.identifier.citedreferenceRosano C, Metti AL, Rosso AL, Studenski S, Bohnen NI. Influence of striatal dopamine, cerebral small vessel disease, and other risk factors on age‐related parkinsonian motor signs. J Gerontol ‐ Ser A Biol Sci Med Sci. 2020; 75: 696 – 701.
dc.identifier.citedreferenceBuchman AS, Leurgans SE, Yu L, Wilson RS, Lim AS, James BD, et al. Incident parkinsonism in older adults without Parkinson disease. Neurology. 2016; 87: 1036 – 44.
dc.identifier.citedreferenceRoss GW, Petrovitch H, Abbott RD, Wilson RS, Lim AS, James BD, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004; 56: 532 – 9.
dc.identifier.citedreferenceHatate J, Miwa K, Matsumoto M, Sasaki T, Yagita Y, Sakaguchi M, et al. Association between cerebral small vessel diseases and mild parkinsonian signs in the elderly with vascular risk factors. Park Relat Disord. 2016; 26: 29 – 34.
dc.identifier.citedreferenceDe Laat KF, Van Norden AGW, Gons RAR, van Uden IWM, Zwiers MP, Bloem BR, et al. Cerebral white matter lesions and lacunar infarcts contribute to the presence of mild parkinsonian signs. Stroke. 2012; 43: 2574 – 9.
dc.identifier.citedreferenceDe Laat KF, van Norden AGW, van Oudheusden LJB, van Uden IWM, Norris DG, Zwiers MP, et al. Diffusion tensor imaging and mild parkinsonian signs in cerebral small vessel disease. Neurobiol Aging. 2012; 33: 2106 – 12.
dc.identifier.citedreferenceMiller‐Patterson C, Han J, Yaffe K, Rosso AL, Launer LJ, Kritchevsky SB, et al. Clinical and neuroimaging correlates of progression of mild parkinsonian signs in community‐dwelling older adults. Park Relat Disord. 2020; 75: 85 – 90.
dc.identifier.citedreferenceRosano C, Bennett DA, Newman AB, Venkatraman V, Yaffe K, Harris T, et al. Patterns of focal gray matter atrophy are associated with bradykinesia and gait disturbances in older adults. J Gerontol ‐ Ser A Biol Sci Med Sci. 2012; 67 A: 957 – 62.
dc.identifier.citedreferenceFox PT, Lancaster JL. Mapping context and content: the BrainMap model. Nat Rev Neurosci. 2002; 3: 319 – 21.
dc.identifier.citedreferenceSmith SM, Fox PMT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009; 106: 13040 – 5.
dc.identifier.citedreferenceZitser J, Casaletto KB, Staffaroni AM, Sexton C, Weiner‐Light S, Wolf A, et al. Mild motor signs matter in typical brain aging: the value of the UPDRS score within a functionally intact cohort of older adults. Front Aging Neurosci 2021; 13. 18.
dc.identifier.citedreferenceHerz DM, Eickhoff SB, Løkkegaard A, Siebner HR. Functional neuroimaging of motor control in Parkinson’s disease: a meta‐analysis. Hum Brain Mapp. 2014; 35: 3227 – 37.
dc.identifier.citedreferenceDayan E, Browner N. Alterations in striato‐thalamo‐pallidal intrinsic functional connectivity as a prodrome of Parkinson’s disease. Neuroimage Clin. 2017; 16: 313 – 8.
dc.identifier.citedreferenceRolinski M, Griffanti L, Piccini P, Roussakis AA, Szewczyk‐Krolikowski K, Menke RA, et al. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease. Brain. 2016; 139: 2224 – 34.
dc.identifier.citedreferenceContreras JA, Avena‐Koenigsberger A, Risacher SL, West JD, Tallman E, McDonald BC, et al. Resting state network modularity along the prodromal late onset Alzheimer’s disease continuum. Neuroimage Clin. 2019; 22: 101687.
dc.identifier.citedreferenceUnschuld PG, Joel SE, Liu X, Shanahan M, Margolis RL, Biglan KM, et al. Impaired cortico‐striatal functional connectivity in prodromal Huntington’s disease. Neurosci Lett. 2012; 514: 204 – 9.
dc.identifier.citedreferenceKoenig KA, Lowe MJ, Harrington DL, Lin J, Durgerian S, Mourany L, et al. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease. Brain Connect. 2014; 4: 535 – 46.
dc.identifier.citedreferenceKronenbuerger M, Hua J, Bang JYA, Ultz KE, Miao X, Zhang X, et al. Differential changes in functional connectivity of striatum‐prefrontal and striatum‐motor circuits in premanifest Huntington’s disease. Neurodegener Dis. 2019; 19: 78 – 87.
dc.identifier.citedreferenceTrojsi F, Di Nardo F, Siciliano M, Caiazzo G, Passaniti C, D’Alvano G, et al. Resting state functional MRI brain signatures of fast disease progression in amyotrophic lateral sclerosis: a retrospective study. Amyotroph Lateral Scler Front Degener. 2020; 22 ( 1–2 ): 117 – 126.
dc.identifier.citedreferenceBorroni B, Premi E, Formenti A, et al. Structural and functional imaging study in dementia with Lewy bodies and Parkinson’s disease dementia. Park Relat Disord. 2015; 21: 1049 – 55.
dc.identifier.citedreferenceWang Z, Guo Y, Myers KG, Heintz R, Peng Y‐H, Maarek J‐MI, et al. Exercise alters resting‐state functional connectivity of motor circuits in parkinsonian rats. Neurobiol Aging. 2015; 36: 536 – 44.
dc.identifier.citedreferenceShah C, Beall EB, Frankemolle AMM, Penko A, Phillips MD, Lowe MJ, et al. Exercise therapy for Parkinson’s disease: pedaling rate is related to changes in motor connectivity. Brain Connect. 2016; 6: 25 – 36.
dc.identifier.citedreferenceRuppert MC, Greuel A, Tahmasian M, Schwartz F, Stürmer S, Maier F, et al. Network degeneration in Parkinson’s disease: multimodal imaging of nigro‐striato‐cortical dysfunction. Brain. 2020; 143: 944 – 59.
dc.identifier.citedreferenceSzewczyk‐Krolikowski K, Menke RAL, Rolinski M, Duff E, Salimi‐Khorshidi G, Filippini N, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology. 2014; 83: 208 – 14.
dc.identifier.citedreferenceWu T, Long X, Zang Y, Wang L, Hallett M, Li K, et al. Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp. 2009; 30: 1502 – 10.
dc.identifier.citedreferenceYang W, Liu B, Huang B, Huang R, Wang L, Zhang Y, et al. Altered resting‐state functional connectivity of the striatum in Parkinson’s disease after levodopa administration. PLoS One. 2016; 11: e0161935.
dc.identifier.citedreferenceFestini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Müller MLTM, et al. Altered cerebellar connectivity in Parkinson’s patients ON and OFF L‐DOPA medication. Front Hum Neurosci. 2015; 9: 214.
dc.identifier.citedreferenceRosso AL, Studenski SA, Chen WG, Aizenstein HJ, Alexander NB, Bennett DA, et al. Aging, the central nervous system, and mobility. J Gerontol Ser A. 2013; 68: 1379 – 86.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.