Show simple item record

Increasing Functional Diversity in a Global Land Surface Model Illustrates Uncertainties Related to Parameter Simplification

dc.contributor.authorButler, Ethan E.
dc.contributor.authorWythers, Kirk R.
dc.contributor.authorFlores-Moreno, Habacuc
dc.contributor.authorRicciuto, Daniel M.
dc.contributor.authorDatta, Abhirup
dc.contributor.authorBanerjee, Arindam
dc.contributor.authorAtkin, Owen K.
dc.contributor.authorKattge, Jens
dc.contributor.authorThornton, Peter E.
dc.contributor.authorAnand, Madhur
dc.contributor.authorBurrascano, Sabina
dc.contributor.authorByun, Chaeho
dc.contributor.authorCornelissen, J. H. C.
dc.contributor.authorForey, Estelle
dc.contributor.authorJansen, Steven
dc.contributor.authorKramer, Koen
dc.contributor.authorMinden, Vanessa
dc.contributor.authorReich, Peter B.
dc.date.accessioned2022-04-08T18:07:25Z
dc.date.available2023-04-08 14:07:22en
dc.date.available2022-04-08T18:07:25Z
dc.date.issued2022-03
dc.identifier.citationButler, Ethan E.; Wythers, Kirk R.; Flores-Moreno, Habacuc ; Ricciuto, Daniel M.; Datta, Abhirup; Banerjee, Arindam; Atkin, Owen K.; Kattge, Jens; Thornton, Peter E.; Anand, Madhur; Burrascano, Sabina; Byun, Chaeho; Cornelissen, J. H. C.; Forey, Estelle; Jansen, Steven; Kramer, Koen; Minden, Vanessa; Reich, Peter B. (2022). "Increasing Functional Diversity in a Global Land Surface Model Illustrates Uncertainties Related to Parameter Simplification." Journal of Geophysical Research: Biogeosciences 127(3): n/a-n/a.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/172082
dc.description.abstractSimulations of the land surface carbon cycle typically compress functional diversity into a small set of plant functional types (PFT), with parameters defined by the average value of measurements of functional traits. In most earth system models, all wild plant life is represented by between five and 14 PFTs and a typical grid cell (≈100 × 100 km) may contain a single PFT. Model logic applied to this coarse representation of ecological functional diversity provides a reasonable proxy for the carbon cycle, but does not capture the non‐linear influence of functional traits on productivity. Here we show through simulations using the Energy Exascale Land Surface Model in 15 diverse terrestrial landscapes, that better accounting for functional diversity markedly alters predicted total carbon uptake. The shift in carbon uptake is as great as 30% and 10% in boreal and tropical regions, respectively, when compared to a single PFT parameterized with the trait means. The traits that best predict gross primary production vary based on vegetation phenology, which broadly determines where traits fall within the global distribution. Carbon uptake is more closely associated with specific leaf area for evergreen PFTs and the leaf carbon to nitrogen ratio in deciduous PFTs.Plain Language SummaryPlants play a critical role in the global carbon cycle, and diversity has been shown to influence vegetation productivity. However, when the land surface is simulated in a global model all wild plant life is reduced to a small number of plant functional types. Here we estimate how incorporating diversity influences ecosystem carbon uptake in 15 globe spanning landscapes. We find that diversity has a strong influence on modeled productivity, particularly in the arctic and tropics. Further, we find that whether plants shed their leaves annually has a strong influence on where traits fall within the global distribution and thus how traits and productivity interact.Key PointsWe implemented distributions of leaf economic spectrum traits in a land surface model in 15 diverse landscapesTrait variation has a substantial influence on gross primary production (GPP)Phenology plays a key role in guiding where traits fall within the global trait distribution and hence trait‐GPP relationships
dc.publisherJohn Wiley & Sons
dc.subject.otherdiversity
dc.subject.othercarbon cycle
dc.subject.otherglobal models
dc.subject.otherphenology
dc.subject.otherfunctional traits
dc.titleIncreasing Functional Diversity in a Global Land Surface Model Illustrates Uncertainties Related to Parameter Simplification
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172082/1/2021JG006606-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172082/2/jgrg22181_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172082/3/jgrg22181.pdf
dc.identifier.doi10.1029/2021JG006606
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferenceOnoda, Y., Westoby, M., Adler, P. B., Choong, A. M. F., Clissold, F. J., Cornelissen, J. H. C., et al. ( 2011 ). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301 – 312. https://doi.org/10.1111/j.1461-0248.2010.01582.x
dc.identifier.citedreferenceQuested, H. M., Cornelissen, J. H. C., Press, M. C., Callaghan, T. V., Aerts, R., Trosien, F., et al. ( 2003 ). Decomposition of sub‐arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology, 84, 3209 – 3221.
dc.identifier.citedreferenceReich, P. B., Oleksyn, J., & Wright, I. J. ( 2009 ). Leaf phosphorus influences the photosynthesis‐nitrogen relation: A cross‐biome analysis of 314 species. Oecologia, 160, 207 – 212.
dc.identifier.citedreferenceReich, P. B., Tjoelker, M. G., Pregitzer, K. S., Wright, I. J., Oleksyn, J., & Machado, J. L. ( 2008 ). Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11, 793 – 801. https://doi.org/10.1111/j.1461-0248.2008.01185.x
dc.identifier.citedreferenceRougier, J., Sexton, D., Murphy, J., & Stainforth, D. ( 2009 ). Analyzing the climate sensitivity of HadSM3 climate model using ensembles from different but related experiments. Journal of Climate, 22, 3540 – 3557.
dc.identifier.citedreferenceRoustant, O., Ginsbourger, D., & Deville, Y. ( 2012 ). DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging‐based metamodeling and optimization.
dc.identifier.citedreferenceSack, L. ( 2004 ). Responses of temperate woody seedlings to shade and drought: Do trade‐offs limit potential niche differentiation? Oikos, 107, 110 – 127.
dc.identifier.citedreferenceSack, L., Cowan, P. D., Jaikumar, N., & Holbrook, N. M. ( 2003 ). The ’hydrology’ of leaves: Co‐ordination of structure and function in temperate woody species. Plant, Cell and Environment, 26, 1343 – 1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x
dc.identifier.citedreferenceSack, L., Melcher, P. J., Liu, W. H., Middleton, E., & Pardee, T. ( 2006 ). How strong is intracanopy leaf plasticity in temperate deciduous trees? American Journal of Botany, 93, 829 – 839.
dc.identifier.citedreferenceSack, L., Tyree, M. T., & Holbrook, N. M. ( 2005 ). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist, 167, 403 – 413.
dc.identifier.citedreferenceSacks, J., Welch, W., Mitchell, T., & Wynn, H. ( 1989 ). Design and analysis of computer experiments. Statistical Science, 1, 409 – 423.
dc.identifier.citedreferenceSandel, D., Corbin, J. D., & Krupa, M. ( 2011 ). Using plant functional traits to guide restoration: A case study in California coastal grassland. Ecosphere, 2. art23.
dc.identifier.citedreferenceScherer‐Lorenzen, M., Schulze, E.‐D., Don, A., Schumacher, J., & Weller, E. ( 2007 ). Exploring the functional significance of forest diversity: A new long‐term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 9, 53 – 70.
dc.identifier.citedreferenceScoffoni, C., Pou, A., Aasamaa, K., & Sack, L. ( 2008 ). The rapid light response of leaf hydraulic conductance: New evidence from two experimental methods. Plant, Cell and Environment, 31, 1803 – 1812.
dc.identifier.citedreferenceShiodera, S., Rahajoe, J. S., & Kohyama, T. ( 2008 ). Variation in longevity and traits of leaves among co‐occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology, 24, 121 – 133.
dc.identifier.citedreferenceShipley, B. ( 2002 ). Trade‐offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecology ( 16 ), 682 – 689.
dc.identifier.citedreferenceShipley, B. ( 1995 ). Structured interspecific determinants of specific leaf‐area in 34 species of herbaceous angiosperms. Functional Ecology, 9, 312 – 319.
dc.identifier.citedreferenceShipley, B., & Lechowicz, M. J. ( 2000 ). The functional co‐ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience, 7, 183 – 194.
dc.identifier.citedreferenceShipley, B., & Vu, T. T. ( 2002 ). Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153, 359 – 364.
dc.identifier.citedreferenceSpasojevic, M. J., & Suding, K. N. ( 2012 ). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652 – 661.
dc.identifier.citedreferenceStein, M. ( 1987 ). Large sample properties of simulations using Latin hypercube sampling. Technometrics, 29, 143 – 151.
dc.identifier.citedreferenceSwaine, E. K. ( 2007 ). Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest. PhD Thesis. University of Aberdeen.
dc.identifier.citedreferenceTucker, S. S., Craine, J. M., & Nippert, J. B. ( 2011 ). Physiological drought tolerance and the structuring of tallgrass assemblages. Ecosphere, 2 ( 4 ), 48.
dc.identifier.citedreferencevan Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakke, C., & Aerts, R. ( 2008 ). Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology, 89, 193 – 204.
dc.identifier.citedreferenceVergutz, L., Manzoni, S., Porporato, A., Novais, R. F., & Jackson, R. B. ( 2012 ). A global database of carbon and nutrient concentrations of green and senesced leaves. [Dataset]. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1106
dc.identifier.citedreferenceVile, D. ( 2005 ). Significations fonctionnelle et ecologique des traits des especes vegetales: Exemple dans une succession post‐cultural mediterraneenne et generalisations. PHD Thesis.
dc.identifier.citedreferenceWaite, M., & Sack, L. ( 2010 ). How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytologist, 185, 156 – 172.
dc.identifier.citedreferenceHan, W., Chen, Y., Zhao, F.‐J., Tang, L., Jiang, R., & Zhang, F. ( 2011 ). Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography, 21, 376 – 382. https://doi.org/10.1111/j.1466-8238.2011.00677.x
dc.identifier.citedreferenceWilliams, M., Shimabokuro, Y. E., & Rastetter, E. B. ( 2012 ). LBA‐ECO CD‐09 soil and vegetation characteristics, Tapajos National forest, Brazil. Data set. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1104
dc.identifier.citedreferenceWillis, C. G., Halina, M., Lehman, C., Reich, P. B., Keen, A., McCarthy, S., & Cavender‐Bares, J. ( 2010 ). Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, 33, 565 – 577.
dc.identifier.citedreferenceWilson, K., Baldocchi, D., & Hanson, P. ( 2000 ). Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 20, 565 – 578.
dc.identifier.citedreferenceWirth, C., & Lichstein, J. W. ( 2009 ). The imprint of species turnover on old‐growth forest carbon balances ‐ Insights from a trait‐based model of forest dynamics. In C. Wirth, G. Gleixner, & M. Heimann (Eds.), Old‐growth forests: Function, fate and value (pp. 81 – 113 ). Springer.
dc.identifier.citedreferenceWright, I. J., Ackerly, D. D., Bongers, F., Harms, K. E., Ibarra‐Manriquez, G., Martinez‐Ramos, M., et al. ( 2007 ). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003 – 1015.
dc.identifier.citedreferenceWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428, 821 – 827.
dc.identifier.citedreferenceWright, J. P., & Sutton‐Grier, A. ( 2012 ). Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology, 26, 1390 – 1398. https://doi.org/10.1111/1365-2435.12001
dc.identifier.citedreferenceWright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., et al. ( 2011 ). Functional traits and the growth‐mortality tradeoff in tropical trees. Ecology, 91, 3664 – 3674. https://doi.org/10.1890/09-2335.1
dc.identifier.citedreferenceXu, L. K., & Baldocchi, D. D. ( 2003 ). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 23, 865 – 877.
dc.identifier.citedreferenceYguel, B., Bailey, R., Tosh, N. D., Vialatte, A., Vasseur, C., Vitrac, X., et al. ( 2011 ). Phytophagy on phylogenetically isolated trees: Why hosts should escape their relatives. Ecology Letters, 14, 1117 – 1124.
dc.identifier.citedreferenceMessier, J., McGill, B. J., & Lechowicz, M. J. ( 2010 ). How do traits vary across ecological scales? A case for trait‐based ecology. Ecology Letters, 13, 838 – 848.
dc.identifier.citedreferenceHarper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C. D., Sitch, S., et al. ( 2016 ). Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 9 ( 7 ), 2415 – 2440. https://doi.org/10.5194/gmd-9-2415-2016
dc.identifier.citedreferenceAlbritton, D. L., Meira Filho, L. G., Cubasch, U., Dai, X., Ding, Y., Griggs, D. J., et al. ( 2001 ). IPCC TAR: WG I technical summary. Climate Change, 21 – 83.
dc.identifier.citedreferenceBernacchi, C., Singsaas, E., Pimentel, C., Portis, A., Jr, & Long, S. ( 2001 ). Improved temperature response functions for models of Rubisco‐limited photosynthesis. Plant, Cell & Environment, 24 ( 2 ), 253 – 259. https://doi.org/10.1111/j.1365-3040.2001.00668.x
dc.identifier.citedreferenceBernacchi, C. J., Pimentel, C., & Long, S. P. ( 2003 ). In vivo temperature response functions of parameters required to model RuBP‐limited photosynthesis. Plant, Cell & Environment, 26 ( 9 ), 1419 – 1430. https://doi.org/10.1046/j.0016-8025.2003.01050.x
dc.identifier.citedreferenceBonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., et al. ( 2011 ). Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of Geophysical Research, 116 ( G2 ), 1 – 22. https://doi.org/10.1029/2010JG001593
dc.identifier.citedreferenceBonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., & Reichstein, M. ( 2012 ). Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. Journal of Geophysical Research, 117 ( 2 ), 1 – 19. https://doi.org/10.1029/2011JG001913
dc.identifier.citedreferenceButler, E. E., Datta, A., Flores‐Moreno, H., Chen, M., Wythers, K. R., Fazayeli, F., et al. ( 2017 ). Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences, 114 ( 51 ), E10937 – E10946. https://doi.org/10.1073/pnas.1708984114
dc.identifier.citedreferenceCastruccio, S., McInerney, D., Stein, M., Liu, C. F., Jacob, R., & Moyer, E. ( 2014 ). Statistical emulation of climate model projections based on precomputed GCM runs. Journal of Climate, 27 ( 5 ), 1829 – 1844. https://doi.org/10.1175/jcli-d-13-00099.1
dc.identifier.citedreferenceCover, T. M., & Thomas, J. A. ( 1991 ). Elements of information theory. John Wiley & Sons.
dc.identifier.citedreferenceFalge, E., Aubinet, M., Bakwin, P., Baldocchi, D., Berbigier, P., Bernhofer, C., et al. ( 2016 ). FLUXNET research network site characteristics, investigators, and bibliography. Oak Ridge Natl. Lab.
dc.identifier.citedreferenceFatichi, S., Pappas, C., Zscheischler, J., & Leuzinger, S. ( 2019 ). Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 221 ( 2 ), 652 – 668. https://doi.org/10.1111/nph.15451
dc.identifier.citedreferenceFunk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender‐Bares, J., Firn, J., et al. ( 2017 ). Revisiting the Holy grail: Using plant functional traits to understand ecological processes: Plant functional traits. Biological Reviews, 92 ( 2 ), 1156 – 1173. https://doi.org/10.1111/brv.12275
dc.identifier.citedreferenceHarrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., & Sutra, J.‐P. ( 2010 ). Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21 ( 2 ), 300 – 317. https://doi.org/10.1111/j.1654-1103.2009.01144.x
dc.identifier.citedreferenceIsbell, F., Cowles, J., Dee, L. E., Loreau, M., Reich, P. B., Gonzalez, A., et al. ( 2018 ). Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 21 ( 6 ), 763 – 778. https://doi.org/10.1111/ele.12928
dc.identifier.citedreferenceIversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet, G. T., Kattge, J., et al. ( 2017 ). A global fine‐root ecology database to address below‐ground challenges in plant ecology. New Phytologist, 215 ( 1 ), 15 – 26. https://doi.org/10.1111/nph.14486
dc.identifier.citedreferenceJensen, J. ( 1905 ). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30 ( 1 ), 175 – 193.
dc.identifier.citedreferenceKattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., et al. ( 2011 ). TRY–a global database of plant traits. Global Change Biology, 17 ( 9 ), 2905 – 2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
dc.identifier.citedreferenceKattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, L. C., Leadly, P., et al. ( 2020 ). TRY plant trait database–enhanced coverage and open access. Global Change Biology, 26, 119 – 188. https://doi.org/10.1111/gcb.14904
dc.identifier.citedreferenceKoven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., et al. ( 2013 ). The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 10 ( 11 ), 7109 – 7131. https://doi.org/10.5194/bg-10-7109-2013
dc.identifier.citedreferenceLamarque, J.‐F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., et al. ( 2010 ). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10 ( 15 ), 7017 – 7039. https://doi.org/10.5194/acp-10-7017-2010
dc.identifier.citedreferenceLeuning, R. ( 2002 ). Temperature dependence of two parameters in a photosynthesis model. Plant, Cell & Environment, 25 ( 9 ), 1205 – 1210. https://doi.org/10.1046/j.1365-3040.2002.00898.x
dc.identifier.citedreferenceLiang, J., Lee, B., Ngugi, M. R., Rovero, F., Herault, B., Schmid, B., et al. ( 2016 ). Positive biodiversity‐productivity relationship predominant in global forests. Science, 354 ( 6309 ), aaf8957. https://doi.org/10.1126/science.aaf8957
dc.identifier.citedreferenceMedvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., & Moorcroft, P. R. ( 2009 ). Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. Journal of Geophysical Research, 114 ( G1 ), G01002. https://doi.org/10.1029/2008JG000812
dc.identifier.citedreferenceMoorcroft, P. R., Hurtt, G. C., & Pacala, S. W. ( 2001 ). A method for scaling vegetation dynamics: The ecosystem demography model (ED). Ecological Monographs, 71 ( 4 ), 557 – 586. https://doi.org/10.1890/0012-9615(2001)071[0557:amfsvd]2.0.co;2
dc.identifier.citedreferenceNicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., et al. ( 2010 ). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15 ( 12 ), 684 – 692. https://doi.org/10.1016/j.tplants.2010.09.008
dc.identifier.citedreferenceOehri, J., Schmid, B., Schaepman‐Strub, G., & Niklaus, P. A. ( 2017 ). Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proceedings of the National Academy of Sciences, 114 ( 38 ), 10160 – 10165. https://doi.org/10.1073/pnas.1703928114
dc.identifier.citedreferenceOleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., et al. ( 2013 ). Technical description of version 4.5 of the community land model (CLM ) (No. climate and global dynamics division) (p. 434 ). https://doi.org/10.5065/D6RR1W7M
dc.identifier.citedreferencePappas, C., Fatichi, S., & Burlando, P. ( 2014 ). Terrestrial water and carbon fluxes across climatic gradients: Does plant diversity matter? New Phytologist, 209 ( 1 ), 137 – 151. https://doi.org/10.1111/nph.13590
dc.identifier.citedreferencePavlick, R., Reu, B., Bohn, K., Kleidon, A., & Drewry, D. T. ( 2013 ). The jena diversity‐dynamic global vegetation model (JeDi‐DGVM): A diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade‐offs. Biogeosciences, 10 ( 6 ), 4137 – 4177. https://doi.org/10.5194/bg-10-4137-2013
dc.identifier.citedreferencePennekamp, F., Pontarp, M., Tabi, A., Altermatt, F., Alther, R., Choffat, Y., et al. ( 2018 ). Biodiversity increases and decreases ecosystem stability. Nature, 563 ( 7729 ), 109 – 112. https://doi.org/10.1038/s41586-018-0627-8
dc.identifier.citedreferenceQuillet, A., Peng, C., & Garneau, M. ( 2010 ). Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environmental Reviews, 18, 333 – 353. https://doi.org/10.1139/A10-016
dc.identifier.citedreferenceReich, P. B. ( 2012 ). Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279 ( 1736 ), 2128 – 2134. https://doi.org/10.1098/rspb.2011.2270
dc.identifier.citedreferenceReich, P. B. ( 2014 ). The world‐wide “fast‐slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102 ( 2 ), 275 – 301. https://doi.org/10.1111/1365-2745.12211
dc.identifier.citedreferenceBahn, M., Wohlfahrt, G., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., et al. ( 1999 ). Leaf photosynthesis, nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the Eastern Alps (pp. 247 – 255 in A).
dc.identifier.citedreferenceReich, P. B., Rich, R. L., Lu, X., Wang, Y.‐P., & Oleksyn, J. ( 2014 ). Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proceedings of the National Academy of Sciences, 111 ( 38 ), 13703 – 13708. https://doi.org/10.1073/pnas.1216054110
dc.identifier.citedreferenceRicciuto, D., Sargsyan, K., & Thornton, P. ( 2018 ). The impact of parametric uncertainties on biogeochemistry in the E3SM land model. Journal of Advances in Modeling Earth Systems, 10 ( 2 ), 297 – 319. https://doi.org/10.1002/2017MS000962
dc.identifier.citedreferenceSakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña‐Claros, M., Heinke, J., et al. ( 2016 ). Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change, 6 ( 11 ), 1032 – 1036. https://doi.org/10.1038/nclimate3109
dc.identifier.citedreferencevon Sakschewski, B., Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., et al. ( 2015 ). Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 21 ( 7 ), 2711 – 2725. https://doi.org/10.1111/gcb.12870
dc.identifier.citedreferenceScheiter, S., Langan, L., & Higgins, S. I. ( 2013 ). Next‐generation dynamic global vegetation models: Learning from community ecology. New Phytologist, 198 ( 3 ), 957 – 969. https://doi.org/10.1111/nph.12210
dc.identifier.citedreferenceSellers, P. J., Mintz, Y., Sud, Y. C., & Dalcher, A. ( 1986 ). A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences, 43 ( 6 ), 505 – 531. https://doi.org/10.1175/1520-0469(1986)043<0505:asbmfu>2.0.co;2
dc.identifier.citedreferenceSwenson, S., Lawrence, D., & Lee, H. ( 2012 ). Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. Journal of Advances in Modeling Earth Systems, 4 ( 3 ), M08002. https://doi.org/10.1029/2012ms000165
dc.identifier.citedreferenceThornton, P. E., Lamarque, J.‐F., Rosenbloom, N. A., & Mahowald, N. M. ( 2007 ). Influence of carbon‐nitrogen cycle coupling on land model response to CO 2 fertilization and climate variability. Global Biogeochemical Cycles, 21 ( 4 ), GB4018. https://doi.org/10.1029/2006gb002868
dc.identifier.citedreferenceThornton, P. E., & Rosenbloom, N. A. ( 2005 ). Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological Modelling, 189 ( 1–2 ), 25 – 48. https://doi.org/10.1016/j.ecolmodel.2005.04.008
dc.identifier.citedreferenceThornton, P. E., & Zimmermann, N. E. ( 2007 ). An improved canopy integration scheme for a land surface model with prognostic canopy structure. Journal of Climate, 20 ( 15 ), 3902 – 3923. https://doi.org/10.1175/JCLI4222.1
dc.identifier.citedreferenceTilman, D., Reich, P. B., & Isbell, F. ( 2012 ). Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences, 109 ( 26 ), 10394 – 10397. https://doi.org/10.1073/pnas.1208240109
dc.identifier.citedreferencevan Bodegom, P. M., Douma, J. C., & Verheijen, L. M. ( 2014 ). A fully traits‐based approach to modeling global vegetation distribution. Proceedings of the National Academy of Sciences, 111 ( 38 ), 13733 – 13738. https://doi.org/10.1073/pnas.1304551110
dc.identifier.citedreferenceVirtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. ( 2020 ). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261 – 272. https://doi.org/10.1038/s41592-019-0686-2
dc.identifier.citedreferenceWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428 ( 6985 ), 821 – 827. https://doi.org/10.1038/nature02403
dc.identifier.citedreferenceWullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami, S., Iversen, C. M., et al. ( 2014 ). Plant functional types in Earth system models: Past experiences and future directions for application of dynamic vegetation models in high‐latitude ecosystems. Annals of Botany, 114 ( 1 ), 1 – 16. https://doi.org/10.1093/aob/mcu077
dc.identifier.citedreferenceYang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F., & Norby, R. J. ( 2019 ). The effects of phosphorus cycle dynamics on carbon sources and sinks in the amazon region: A modeling study using ELM v1. Journal of Geophysical Research: Biogeosciences, 124 ( 12 ), 3686 – 3698. https://doi.org/10.1029/2019jg005082
dc.identifier.citedreferenceYang, X., Thornton, P. E., Ricciuto, D. M., & Post, W. M. ( 2014 ). The role of phosphorus dynamics in tropical forests–a modeling study using CLM‐CNP. Biogeosciences, 11 ( 6 ), 1667 – 1681. https://doi.org/10.5194/bg-11-1667-2014
dc.identifier.citedreferenceAdler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E., & Burke, IC. ( 2004 ). Functional traits of graminoids in semi‐arid steppes: A test of grazing histories. Journal of Applied Ecology 2004, 41, 653 – 663.
dc.identifier.citedreferenceAdriaenssens, S. ( 2012 ). Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis (p. 209 ). Ghent University..
dc.identifier.citedreferenceAtkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H., & Pons, T. L. ( 1997 ). Leaf respiration in light and darkness—A comparison of slow‐ and fast‐growing Poa species. Plant Physiology, 113, 961 – 965.
dc.identifier.citedreferenceAtkin, O. K., Schortemeyer, M., McFarlane, N., & Evans, J. R. ( 1999 ). The response of fast‐ and slow‐growing Acacia species to elevated atmospheric CO 2: An analysis of the underlying components of relative growth rate. Oecologia, 120, 544 – 554.
dc.identifier.citedreferenceAuger, S., & Shipley, B. ( 2012 ). Interspecific and intraspecific trait variation along short environmental gradients in an old‐growth temperate forest. Journal of Vegetation Science, 24, 419 – 428.
dc.identifier.citedreferenceBakker, C., Rodenburg, J., & Bodegom, P. ( 2005 ). Effects of Ca‐ and Fe‐rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil, 275, 111 – 122.
dc.identifier.citedreferenceBakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O., & Aerts, R. ( 2006 ). Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecology, 185, 19 – 28.
dc.identifier.citedreferenceBaraloto, C., Paine, C. E. T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.‐M., et al. ( 2010 ). Decoupled leaf and stem economics in rainforest trees. Ecology Letters, 13, 1338 – 1347.
dc.identifier.citedreferenceBeckmann, M., Hock, M., Bruelheide, H., & Erfmeier, A. ( 2012 ). The role of UV‐B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environmental and Experimental Botany, 75, 173 – 180.
dc.identifier.citedreferenceBlonder, B., Buzzard, B., Sloat, L., Simova, I., Lipson, R., Boyle, B., & Enquist, B. ( 2012 ). The shrinkage effect biases estimates of paleoclimate. American Journal of Botany, 9, 1756 – 1763. https://doi.org/10.3732/ajb.1200062
dc.identifier.citedreferenceBlonder, B., Vasseur, F., Violle, C., Shipley, B., Enquist, B. J., & Vile, D. ( 2015 ). Testing models for the leaf economics spectrum with leaf and whole‐plant traits in Arabidopsis thaliana. AoB PLANTS, 7, plv049. https://doi.org/10.1093/aobpla/plv049
dc.identifier.citedreferenceBlonder, B., Violle, C., & Enquist, B. J. ( 2013 ). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101, 981 – 989. https://doi.org/10.1111/1365-2745.12102
dc.identifier.citedreferenceBond‐Lamberty, B., Wang, C., & Gower, S. T. ( 2002 ). Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology, 22 ( 14 ), 993 – 1001.
dc.identifier.citedreferenceBrown, K. A., Flynn, D. F. B., Abram, N. K., Ingram, J. C., Johnson, S. E., & Wright, P. ( 2011 ). Assessing natural resource use by forest‐reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS One, 6 ( 9 ), e24107. https://doi.org/10.1371/journal.pone.0024107
dc.identifier.citedreferenceBurrascano, S., Copiz, R., Del Vico, E., Fagiani, S., Giarrizzo, E., Mei, M., et al. ( 2015 ). Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology, 16 ( 2 ), 244 – 253. doi: https://doi.org/10.1556/168.2015.16.2.12
dc.identifier.citedreferenceButterfield, B. J., & Briggs, J. M. ( 2011 ). Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia, 165, 477 – 487.
dc.identifier.citedreferenceByun, C., de Blois, S., & Brisson, J. ( 2012 ). Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 101, 128 – 139. https://doi.org/10.1111/1365-2745.12016
dc.identifier.citedreferenceCampbell, C., Atkinson, L., Zaragoza‐Castells, J., Lundmark, M., Atkin, O., & Hurry, V. ( 2007 ). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176, 375 – 389.
dc.identifier.citedreferenceCampetella, G., Botta‐Dukát, Z., Wellstein, C., Canullo, R., Gatto, S., Chelli, S., et al. ( 2011 ). Patterns of plant trait‐environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145 ( 1 ), 38 – 48. https://doi.org/10.1016/j.agee.2011.06.025
dc.identifier.citedreferenceCarnell, R. ( 2018 ). Lhs: Latin hypercube samples. R
dc.identifier.citedreferenceCarswell, F. E., Meir, P., Wandelli, E. V., Bonates, L. C. M., Kruijt, B., Barbosa, E. M., et al. ( 2000 ). Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology, 20 ( 3 ), 179 – 186.
dc.identifier.citedreferenceCavender‐Bares, J., Keen, A., & Miles, B. ( 2006 ). Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109 – S122. https://doi.org/10.1890/0012-9658(2006)87[109:PSOFPC]2.0.CO;2
dc.identifier.citedreferenceCavender‐Bares, J., Sack, L., & Savage, J. ( 2007 ). Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology, 27, 611 – 620.
dc.identifier.citedreferenceCerabolini, B. E. L., Brusa, G., Ceriani, R. M., De Andreis, R., Luzzaro, A., & Pierce, S. ( 2010 ). Can CSR classification be generally applied outside Britain? Plant Ecology, 210, 253 – 261.
dc.identifier.citedreferenceCernusca, A., Tappeiner, U., & Bayfield, N. (Eds.), Land‐use changes in European mountain ecosystems ECOMONT‐ concept and results. Blackwell Wissenschaft.
dc.identifier.citedreferenceChen, Y., Han, W., Tang, L., Tang, Z., & Fang, J. ( 2011 ). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 34, 178 – 184. https://doi.org/10.1111/j.1600-0587.2011.06833.x
dc.identifier.citedreferenceChoat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., et al. ( 2012 ). Global convergence in the vulnerability of forests to drought. Nature, 491, 752 – 755. https://doi.org/10.1038/nature11688
dc.identifier.citedreferenceCoomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J., & Sack, L. ( 2008 ). Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters, 4, 302 – 306.
dc.identifier.citedreferenceCornelissen, J. H. C. ( 1996 ). An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology, 84, 573 – 582.
dc.identifier.citedreferenceCornelissen, J. H. C., Cerabolini, B., Castro‐Diez, P., Villar‐Salvador, P., Montserrat‐Marti, G., Puyravaud, J. P., et al. ( 2003 ). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory‐grown seedlings? Journal of Vegetation Science, 14, 311 – 322. https://doi.org/10.1111/j.1654-1103.2003.tb02157.x
dc.identifier.citedreferenceCornelissen, J. H. C., Diez, P. C., & Hunt, R. ( 1996 ). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84, 755 – 765.
dc.identifier.citedreferenceCornelissen, J. H. C., Quested, H. M., Gwynn‐Jones, D., Van Logtestijn, R. S. P., De Beus, M. A. H., Kondratchuk, A., et al. ( 2004 ). Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology, 18, 779 – 786.
dc.identifier.citedreferenceCornwell, W. K., Bhaskar, R., Sack, L., Cordell, S., & Lunch, C. K. ( 2007 ). Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology, 21, 1063 – 1071.
dc.identifier.citedreferenceCornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., et al. ( 2008 ). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065 – 1071.
dc.identifier.citedreferenceCraine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., et al. ( 2009 ). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183, 980 – 992. https://doi.org/10.1111/j.1469-8137.2009.02917.x
dc.identifier.citedreferenceCraine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., & Johnson, L. C. ( 2005 ). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12 – 19.
dc.identifier.citedreferenceCraine, J. M., Nippert, J. B., Towne, E. G., Tucker, S., Kembel, S. W., Skibbe, A., & McLauchlan, K. K. ( 2011 ). Functional consequences of climate‐change induced plant species loss in a tallgrass prairie. Oecologia, 165, 1109 – 1117.
dc.identifier.citedreferenceCraine, J. M., Towne, E. G., Ocheltree, T. W., & Nippert, J. B. ( 2012 ). Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant and Soil, 356, 395 – 403.
dc.identifier.citedreferenceCraven, D., Braden, D., Ashton, M. S., Berlyn, G. P., Wishnie, M., & Dent, D. ( 2007 ). Between and within‐site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management, 238, 335 – 346.
dc.identifier.citedreferenceDemey, A., Staelens, J., Baeten, L., Boeckx, P., Hermy, M., Kattge, J., & Verheyen, K. ( 2013 ). Nutrient input from hemiparasitic litter favors plant species with a fast‐growth strategy. Plant and Soil, 371, 53 – 66. https://doi.org/10.1007/s11104-013-1658-4
dc.identifier.citedreferenceDíaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., et al. ( 2004 ). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295 – 304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x
dc.identifier.citedreferenceDomingues, T. F., Martinelli, L. A., & Ehleringer, J. R. ( 2007 ). Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecology, 193, 101 – 112. https://doi.org/10.1007/s11258-006-9251-z
dc.identifier.citedreferenceDomingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veenendaal, E. M., Schrodt, F., et al. ( 2010 ). Co‐limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33, 959 – 980. https://doi.org/10.1111/j.1365-3040.2010.02119.x
dc.identifier.citedreferenceDunbar‐Co, S., Sporck, M. J., & Sack, L. ( 2009 ). Leaf trait diversification and design in seven rare taxa of the Hawaiian plantago radiation. International Journal of Plant Sciences, 170, 61 – 75.
dc.identifier.citedreferenceFitter, A. H., & Peat, H. J. ( 1994 ). The ecological flora database. Journal of Ecology, 82, 415 – 425.
dc.identifier.citedreferenceFonseca, C. R., Overton, J. M., Collins, B., & Westoby, M. ( 2000 ). Shifts in trait‐combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964 – 977. https://doi.org/10.1046/j.1365-2745.2000.00506.x
dc.identifier.citedreferenceFrenette‐Dussault, C., Shipley, B., Léger, J. F., Meziane, D., & Hingrat, Y. ( 2012 ). Functional structure of an arid steppe plant community reveals similarities with Grime’s C‐S‐R theory. Journal of Vegetation Science, 23, 208 – 222. https://doi.org/10.1111/j.1654-1103.2011.01350.x
dc.identifier.citedreferenceFreschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P., & Aerts, R. ( 2010 ). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362 – 373. https://doi.org/10.1111/j.1365-2745.2009.01615.x
dc.identifier.citedreferenceFyllas, N. M., Patino, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L. A., Quesada, C. A., et al. ( 2009 ). Basin‐wide variations in foliar properties of Amazonian forest: Phylogeny, soils and climate. Biogeosciences, 6, 2677 – 2708.
dc.identifier.citedreferenceGarnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., et al. ( 2007 ). Assessing the effects of land‐use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99, 967 – 985.
dc.identifier.citedreferenceGivnish, T. J., Montgomery, R. A., & Goldstein, G. ( 2004 ). Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: Light regimes, static light responses, and whole‐plant compensation points. American Journal of Botany, 91, 228 – 246.
dc.identifier.citedreferenceGutiérrez, A. G., & Huth, A. ( 2012 ). Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in Plant Ecology, Systematics and Evolution, 14, 243 – 256.
dc.identifier.citedreferenceGuy, A. L., Mischkolz, J. M., & Lamb, E. G. ( 2013 ). Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well watered greenhouse trials. Botany, 91, 176 – 181. https://doi.org/10.1139/cjb-2012-0162
dc.identifier.citedreferenceHan, W. X., Fang, J. Y., Guo, D. L., & Zhang, Y. ( 2005 ). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377 – 385. https://doi.org/10.1111/j.1469-8137.2005.01530.x
dc.identifier.citedreferenceHao, G. Y., Sack, L., Wang, A. Y., Cao, K. F., & Goldstein, G. ( 2010 ). Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non‐hemiepiphytic Ficus tree species. Functional Ecology, 24, 731 – 740.
dc.identifier.citedreferenceHickler, T. ( 1999 ). Plant functional types and community characteristics along environmental gradients on Öland’s Great Alvar (Sweden) Masters Thesis. University of Lund.
dc.identifier.citedreferenceHoof, J., Sack, L., Webb, D. T., & Nilsen, E. T. ( 2008 ). Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica, 40, 113 – 118. https://doi.org/10.1111/j.1744-7429.2007.00325.x
dc.identifier.citedreferenceKattge, J., Knorr, W., Raddatz, T., & Wirth, C. ( 2009 ). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global‐scale terrestrial biosphere models. Global Change Biology, 15, 976 – 991. https://doi.org/10.1111/j.1365-2486.2008.01744.x
dc.identifier.citedreferenceKazakou, E., Vile, D., Shipley, B., Gallet, C., & Garnier, E. ( 2006 ). Co‐variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old‐field succession. Functional Ecology, 20, 21 – 30.
dc.identifier.citedreferenceKennedy, M., & O’Hagan, A. ( 2001 ). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B, 63, 425 – 464.
dc.identifier.citedreferenceKerkhoff, A. J., Fagan, W. F., Elser, J. J., & Enquist, B. J. ( 2006 ). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. American Naturalist, 168, E103 – E122.
dc.identifier.citedreferenceKichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W., & Freschet, G. T. ( 2013 ). Contrasting effects of plant inter‐ and intraspecific variation on community‐level trait measures along an environmental gradient. Functional Ecology, 27, 1254 – 1261. https://doi.org/10.1111/1365-2435.12116
dc.identifier.citedreferenceKleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., et al. ( 2008 ). The LEDA traitbase: A database of life‐history traits of the northwest European flora. Journal of Ecology, 96, 1266 – 1274.
dc.identifier.citedreferenceKraft, N. J. B., Valencia, R., & Ackerly, D. ( 2008 ). Functional traits and niche‐based tree community assembly in an Amazonian forest. Science, 322, 580 – 582.
dc.identifier.citedreferenceKurokawa, H., & Nakashizuka, T. ( 2008 ). Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89, 2645 – 2656.
dc.identifier.citedreferenceLaughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J., & Laliberte, E. ( 2011 ). Climatic constraints on trait‐based forest assembly. Journal of Ecology, 99, 1489 – 1499.
dc.identifier.citedreferenceLaughlin, D. C., Leppert, J. J., Moore, M. M., & Sieg, C. H. ( 2010 ). A multi‐trait test of the leaf‐height‐seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology, 24, 493 – 501. https://doi.org/10.1111/j.1365-2435.2009.01672.x
dc.identifier.citedreferenceLouault, F., Pillar, V. D., Aufrere, J., Garnier, E., & Soussana, J. F. ( 2005 ). Plant traits and functional types in response to reduced disturbance in a semi‐natural grassland. Journal of Vegetation Science, 16, 151 – 160. https://doi.org/10.1111/j.1654-1103.2005.tb02350.x
dc.identifier.citedreferenceLoveys, B. R., Atkinson, L. J., Sherlock, D. J., Roberts, R. L., Fitter, A. H., & Atkin, O. K. ( 2003 ). Thermal acclimation of leaf and root respiration: An investigation comparing inherently fast‐ and slow‐growing plant species. Global Change Biology, 9, 895 – 910.
dc.identifier.citedreferenceMartin, R. E., Asner, G. P., & Sack, L. ( 2007 ). Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia, 151, 387 – 400.
dc.identifier.citedreferenceMedlyn, B. E., Badeck, F.‐W., De Pury, D. G. G., Barton, C. V. M., Broadmeadow, M., Ceulemans, R., et al. ( 1999 ). Effects of elevated CO2 on photosynthesis in European forest species: A meta‐analysis of model parameters. Plant, Cell and Environment, 22, 1475 – 1495.
dc.identifier.citedreferenceMeir, P., Kruijt, B., Broadmeadow, M., Kull, O., Carswell, F., & Nobre, A. ( 2002 ). Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment, 25 ( 3 ), 343 – 357. https://doi.org/10.1046/j.0016-8025.2001.00811.x
dc.identifier.citedreferenceMeir, P., & Levy, P. E. ( 2007 ). Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology, 192 ( 2 ), 277 – 287.
dc.identifier.citedreferenceMeziane, D., & Shipley, B. ( 1999 ). Interacting determinants of specific leaf area in 22 herbaceous species: Effects of irradiance and nutrient availability. Plant, Cell and Environment, 22, 447 – 459. https://doi.org/10.1046/j.1365-3040.1999.00423.x
dc.identifier.citedreferenceMilla, & Reich. ( 2011 ). Multi‐trait interactions, not phylogeny, fine‐tune leaf size reduction with increasing altitude. Annals of Botany, 107, 455 – 465.
dc.identifier.citedreferenceMinden, V., Andratschke, S., Spalke, J., Timmermann, H., & Kleyer, M. ( 2012 ). Plant trait‐environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics, 14, 183 – 192.
dc.identifier.citedreferenceMinden, V., & Kleyer, M. ( 2011 ). Testing the effect‐response framework: Key response and effect traits determining above‐ground biomass of salt marshes. Journal of Vegetation Science, 22, 387 – 401.
dc.identifier.citedreferenceNakahashi, C. D., Frole, K., & Sack, L. ( 2005 ). Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): Does it contribute to seedling growth capacity? Plant Biology, 7, 495 – 500.
dc.identifier.citedreferenceNiinemets, U. ( 2001 ). Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453 – 469.
dc.identifier.citedreferenceOgaya, R., & Penuelas, J. ( 2003 ). Comparative field study of Quercus ilex and Phillyrea latifolia: Photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137 – 148.
dc.identifier.citedreferenceOrdonez, J. C., van Bodegom, P. M., Witte, J. P. M., Bartholomeus, R. P., van Hal, J. R., & Aerts, R. ( 2010 ). Plant strategies in relation to resource supply in mesic to wet environments: Does theory mirror nature? American Naturalist, 175, 225 – 239.
dc.identifier.citedreferencePahl, A. T., Kollmann, J., Mayer, A., & Haider, S. ( 2013 ). No evidence for local adaptation in an invasive alien plant: Field and greenhouse experiments tracing a colonization sequence. Annals of Botany, 112 ( 9 ), 1921 – 1930. https://doi.org/10.1093/aob/mct246
dc.identifier.citedreferencePeco, B., de Pablos, I., Traba, J., & Levassor, C. ( 2005 ). The effect of grazing abandonment on species composition and functional traits: The case of dehesa. Basic and Applied Ecology, 6 ( 2 ), 175 – 183.
dc.identifier.citedreferencePenuelas, J., Sardans, J., Llusia, J., Owen, S., Carnicer, J., Giambelluca, T. W., et al. ( 2010 ). Faster returns on "leaf economics" and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 16, 2171 – 2185. https://doi.org/10.1111/j.1365-2486.2009.02054.x
dc.identifier.citedreferencePierce, S., Brusa, G., Sartori, M., & Cerabolini, B. E. L. ( 2012 ). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 109 ( 5 ), 1047 – 1053.
dc.identifier.citedreferencePierce, S., Brusa, G., Vagge, I., & Cerabolini, B. E. L. ( 2013 ). Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology. 27, 1002 – 1010. https://doi.org/10.1111/1365-2435.12095
dc.identifier.citedreferencePierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A., & Cerabolini, B. ( 2007 ). The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems, 141 ( 3 ), 337 – 343.
dc.identifier.citedreferencePierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M., & Cerabolini, B. ( 2007 ). Disturbance is the principal α‐scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology, 95, 698 – 706. https://doi.org/10.1111/j.1365-2745.2007.01242.x
dc.identifier.citedreferencePillar, V. D., & Sosinski, E. E. ( 2003 ). An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science, 14, 323 – 332. https://doi.org/10.1111/j.1654-1103.2003.tb02158.x
dc.identifier.citedreferencePoorter, H., Niinemets, U., Poorter, L., Wright, I. J., & Villar, R. ( 2009 ). Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New Phytologist, 182, 565 – 588.
dc.identifier.citedreferencePowers, J. S., & Tiffin, P. ( 2012 ). Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Functional Ecology, 24, 927 – 936. https://doi.org/10.1111/j.1365-2435.2010.01701.x
dc.identifier.citedreferencePrentice, I. C., Meng, T., Wang, H., Harrison, S. P., Ni, J., & Wang, G. ( 2011 ). Evidence for a universal scaling relationship of leaf CO 2 drawdown along a moisture gradient. New Phytologist, 190, 169 – 180. https://doi.org/10.1111/j.1469-8137.2010.03579.x
dc.identifier.citedreferencePreston, K. A., Cornwell, W. K., & DeNoyer, J. L. ( 2006 ). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170, 807 – 818. https://doi.org/10.1111/j.1469-8137.2006.01712.x
dc.identifier.citedreferencePrice, C. A., & Enquist, B. J. ( 2007 ). Scaling of mass and morphology in dicotyledonous leaves: An extension of the WBE model. Ecology, 88 ( 5 ), 1132 – 1141.
dc.identifier.citedreferencePyankov, V. I., Kondratchuk, A. V., & Shipley, B. ( 1999 ). Leaf structure and specific leaf mass: The alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist, 143, 131 – 142. https://doi.org/10.1046/j.1469-8137.1999.00435.x
dc.identifier.citedreferenceQuero, J. L., Villar, R., Maranon, T., Zamora, R., Vega, D., & Sack, L. ( 2008 ). Relating leaf photosynthetic rate to whole‐plant growth: Drought and shade effects on seedlings of four Quercus species. Functional Plant Biology, 35, 725 – 737.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.